POJ 1228 Grandpa's Estate -

本文介绍了解决POJ 1228问题的方法,该问题涉及几何学中凸包的概念及其实现算法。通过计算至少包含三个点的共线边来判断是否满足条件,并详细解释了如何使用叉积来确定共线点。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目地址:http://poj.org/problem?id=1228

因为每条边至少要有3个点,所以要判断每条边有几个点共线

方法是求出凸包的点,再任意枚举凸包上相邻的两个点,再遍历其他点利用叉积看是否与它共线

要注意:但点数小于6是肯定不可能的,还有所有点都共线的情况也是不可能的


#include<iostream>
#include<cstdio>
#include<vector>
#include<algorithm>
#include<cmath>
using namespace std;
#define Vector Point
const double EPS=1e-6;
int Sign(double x){
	if(fabs(x)<EPS) return 0;
	return x < 0 ? -1 : 1 ;
}
struct Point{
	double x,y;
	Point(double x,double y):x(x),y(y){}
	Vector operator - (const Point& p){
		return Vector(x-p.x,y-p.y);
	}
	bool operator < (const Point& p) const {
		if(Sign(x-p.x)==0) return y<p.y;
		return x<p.x;
	}
};
double cross(const Vector& p1,const Vector& p2){
	return p1.x*p2.y-p1.y*p2.x;
}

vector<Point> points; 
vector<Point> stack; 

bool Graham()
{
	if(points.size()<6) return false;  //少于6个点是不可能的 
	stack.clear();
	
	sort(points.begin(),points.end());
	stack.push_back(points[0]);
	stack.push_back(points[1]);
	
	int n=points.size();
	for(int i=2;i<n;i++)
	{
		while(stack.size()>1){
			Point p2=*(stack.end()-1);
			Point p1=*(stack.end()-2);
			if(Sign(cross(p2-p1,points[i]-p2))<0)
				stack.pop_back();
			else break;
		}
		stack.push_back(points[i]);
	}
	
	int size=stack.size();
	stack.push_back(points[n-2]);
	for(int i=n-3;i>=0;i--)
	{
		while(stack.size()>size){
			Point p2=*(stack.end()-1);
			Point p1=*(stack.end()-2);
			if(Sign(cross(p2-p1,points[i]-p2))<0)
				stack.pop_back();
			else break;
		}
		stack.push_back(points[i]);
	}
	stack.pop_back();
	return true;
}
int main()
{
	int T;
	cin>>T;
	while(T--)
	{
		int n;
		cin>>n;
		points.clear();
		for(int i=0;i<n;i++)
		{
			int x,y;
			cin>>x>>y;
			points.push_back(Point(x,y));
		}
		
		int ok=0;
		if(Graham())
		for(int i=0;i<stack.size();i++)
		{
			Point p1=stack[i],p2=stack[(i+1)%stack.size()];
			ok=0;
			for(int j=0;j<stack.size();j++)
			{
				if(j==i||j==((i+1)%stack.size())) continue;
				if(Sign(cross(p2-p1,stack[j]-p1))==0) ok++; //若有共线的点就加一 
			}
			if(ok==0||ok==stack.size()-2) break;
		}
		cout<<((ok==0||ok==stack.size()-2)?"NO":"YES")<<endl;
	}        //不存在共线点||所有点都共线 
	
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值