快速幂算法

本文介绍两种快速幂运算的方法,一种采用递归实现,另一种通过循环结构完成。递归方法利用了指数的特性,将问题转化为更小规模的问题;而循环方法则通过分析指数的二进制表示来高效地计算幂值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原理:a^b可以分为以下几种情况

若b是偶数,a^b=a^(b/2) * a^(b/2)

若b是奇数,a^b=a^(b/2) * a^(b/2) * a;

这样就可以用递归了

代码如下

int pow_mod(int a,int n,int m)  //a^n 结果对m取模 
{
	if(n==0) return 1;
	int x= pow_mod(a,n/2,m); 
	long long ans = (long long) x*x%m;
	if(n%2==1) ans=ans*a%m; //但次数为奇数时还要多乘一次 
	return (int)ans;
}


还有一种方法可以不用递归

原理:a^b可以将分解成二进制权值相加的式子,如 a^5=a^(2^2+2^0) ,就等于 a^(1*2^2) + a^(0*2^1) + a^(1*2^0)

所以用一个base计算b的二进制第k位的2^k的值 , 当第k位二进制为1时将2^k*a累加到结果上

代码如下

typedef long long LL;
#define Max 100000
LL f(LL x,LL n)  //x^n 对Max取模 
{
	int result=1;
	int base = x%Max; 
	while(n>0)
	{
		if(n & 1)
		result=(result*base)%Max; //当二进制不为0时,就要乘个 
		base=(base*base)%Max;    //累乘此时二进制的权值 
		n>>=1;
	}
	return result;
}



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值