原理:a^b可以分为以下几种情况
若b是偶数,a^b=a^(b/2) * a^(b/2)
若b是奇数,a^b=a^(b/2) * a^(b/2) * a;
这样就可以用递归了
代码如下
int pow_mod(int a,int n,int m) //a^n 结果对m取模
{
if(n==0) return 1;
int x= pow_mod(a,n/2,m);
long long ans = (long long) x*x%m;
if(n%2==1) ans=ans*a%m; //但次数为奇数时还要多乘一次
return (int)ans;
}
还有一种方法可以不用递归
原理:a^b可以将分解成二进制权值相加的式子,如 a^5=a^(2^2+2^0) ,就等于 a^(1*2^2) + a^(0*2^1) + a^(1*2^0)
所以用一个base计算b的二进制第k位的2^k的值 , 当第k位二进制为1时将2^k*a累加到结果上
代码如下
typedef long long LL;
#define Max 100000
LL f(LL x,LL n) //x^n 对Max取模
{
int result=1;
int base = x%Max;
while(n>0)
{
if(n & 1)
result=(result*base)%Max; //当二进制不为0时,就要乘个
base=(base*base)%Max; //累乘此时二进制的权值
n>>=1;
}
return result;
}