anaconda里面python不同版本如何设置默认版本和安装库 亲测可以使用

本文详细介绍如何使用Anaconda管理多个Python版本,包括环境创建、切换、第三方库安装及国内镜像源设置等关键步骤,帮助读者解决多版本Python环境下的开发难题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

需要安装anaconda

强烈推荐去清华镜像去下载https://mirrors.tuna.tsinghua.edu.cn/help/anaconda/
安装过程还有环境配置就不写了 如果有疑问就评论在下面看见了回复
1首先打开cmd
用什么方式打开无所谓,主要是管理模式运行
2输入python 瞅瞅你的python是什么版本的:python
在这里插入图片描述
3看看你的环境里面都有什么:conda env list
在这里插入图片描述
如果你只有一个环境想装一个你想要的环境
命令:conda create --name py35 python=3.5
#创建python3.5的环境,对应环境和文件夹名称:py35
根据你的需求来输入命令
3.1 查看conda当前的信息:conda info
在这里插入图片描述
3.1.1 2.切换64位和32位:set CONDA_FORCE_32BIT=1是切换到32位;set CONDA_FORCE_32BIT= 是切换到64位。

3切换环境
刚才我的环境是py3.7的,现在切换到3.5 命令是:activate py3.5
在这里插入图片描述
到这里环境已经切换过来了、

如果在这里切不过来

conda deactivate  # 退出虚拟环境
conda activate py3.5  # 再次进行切换
conda env remove --name py35 # 删除创建的虚拟环境

3.1删除名为 myenv 的环境:

conda remove --name myenv --all
conda env remove -n myenv

4安装py3.5的spyder :conda install spyder
pip install spyder 也是可以的
在这里插入图片描述
我已经安装过了 只是个演示

5启动spyder :spyder
在这里插入图片描述
在这里插入图片描述
这样就启动起来了

不同python版本之间怎么安装第三方库

1修改python名
去anaconda目录找到python.exe
修改名字为python37.exe
和anaconda/envs目录找到python.exe
修改名字为python35.exe

2修改环境变量
D:\anaconda\Scripts
D:\anaconda
D:\anaconda\envs\py3.5
D:\anaconda\envs\py3.5\Scripts
将这四个目录放进环境变量里面
!!根据自己的目录来放这个只是我的
在这里插入图片描述
这是python35的
在这里插入图片描述
这就是两个的了
在这里插入图片描述这样就可以分别安装各自的库了
在这里插入图片描述

如果你的系统已经装了两个python

你不知道你的python是哪个在什么地方
在cmd命令行输入 where python 就可以将你所有的python列出来我这里只装了一个
在这里插入图片描述

想装哪一个的库 就把另一个的环境变量注释掉https://i-blog.csdnimg.cn/blog_migrate/897aaa8e7b1d0a28db836fe82d355a81.png
https://imgconvert.csdnimg.cn/aHR0cHM6Ly9hdmF0YXIuY3Nkbi5uZXQvNy83L0IvMV9yYWxmX2h4MTYzY29tLmpwZw
如果这两个python在cmd命令行共同占用一个python你想调整一下他的优先级 你想输入python显示哪个 就将那个环境变量放到最前面 改完环境变量可以泳where python查看一下

国内镜像

http://mirrors.aliyun.com/pypi/simple/ //阿里
https://pypi.tuna.tsinghua.edu.cn/simple/ //清华
http://pypi.douban.com/ //豆瓣
http://pypi.hustunique.com/ //华中理工大学
http://pypi.sdutlinux.org/ //山东理工大学
http://pypi.mirrors.ustc.edu.cn/ //中国科学技术大学

安装模块

pip install appium-python-client
pip install labelImg -i https://pypi.tuna.tsinghua.edu.cn/simple
pip install labelme -i https://pypi.tuna.tsinghua.edu.cn/simple

指定版本安装

pip install selenium==4.4.1

找不到pip模块

python37 -m ensurepip
python37 -m pip install --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple/

pip 的地方在D:\anaconda\Scripts

更新模块

pip install wrapt --ignore-installed

卸载模块

pip uninstall appium-python-client

查看pip详细信息

pip show pip

临时修改镜像

pip install numpy -i https://pypi.tuna.tsinghua.edu.cn/simple/

特别说明

装完库之后记得把名字改回去 不然就扑街了

参考文章

https://blog.csdn.net/guanmaoning/article/details/80031279

Anaconda 是一个广泛用于数据科学机器学习的 Python R 发行版,它自带了大量常用的科学计算、数据分析机器学习,并且支持创建隔离的虚拟环境。AnacondaPython 3 的兼容性主要体现在其不同版本Python 解释器的支持上。以下是关于 AnacondaPython 3 各版本之间兼容性的一些关键信息: - Anaconda版本通常与其支持的 Python 版本相关联。例如,Anaconda 的较新版本通常会默认安装最新的 Python 3.x 版本,而旧版本Anaconda 可能默认安装较早的 Python 3.x 或者仍然支持 Python 2.x [^1]。 - 从 Anaconda 的历史版本来看,Anaconda 2020 年之后的版本已经逐步淘汰了对 Python 2 的支持,并全面转向 Python 3。这意味着,如果你使用的是较新的 Anaconda 版本(如 Anaconda 2022 或 2023),它默认安装 Python 3.9 或更高版本 [^4]。 - Anaconda 提供了通过 conda 创建虚拟环境的功能,可以灵活地指定 Python 版本。例如,可以通过以下命令创建一个使用 Python 3.8 的虚拟环境: ```bash conda create -n myenv python=3.8 ``` 这种方式可以确保项目依赖的 Python 版本Anaconda 的主环境版本不冲突 [^1]。 - 在兼容性方面,Anaconda 的某些包可能对 Python 版本有特定要求。例如,某些较旧的包可能仅支持 Python 3.6 或 3.7,而无法在 Python 3.10 或更高版本中运行。因此,在使用 Anaconda 安装特定包时,需要检查该包是否支持当前环境中的 Python 版本 [^1]。 - 如果需要使用特定版本Python 3,可以通过 conda 指定版本号来安装对应的 Python 解释器。例如,如果需要安装 Python 3.7,可以使用以下命令: ```bash conda install python=3.7 ``` 这种方式可以有效解决不同项目对 Python 版本不同需求 。 ### AnacondaPython 3 兼容性对照表(示例) | Anaconda 版本 | 默认 Python 版本 | 支持的 Python 3.x 版本范围 | |----------------|------------------|----------------------------| | Anaconda 2020.x | Python 3.8 | Python 3.6 - 3.8 | | Anaconda 2021.x | Python 3.9 | Python 3.7 - 3.9 | | Anaconda 2022.x | Python 3.9 | Python 3.8 - 3.10 | | Anaconda 2023.x | Python 3.10 | Python 3.9 - 3.11 | | Anaconda 2024.x | Python 3.11 | Python 3.10 - 3.12 | ### 兼容性注意事项 - **包兼容性**:某些 Python 包可能对 Python 版本有特定要求。例如,TensorFlow 2.x 支持 Python 3.7 及以上版本,而 PyTorch 1.13 则支持 Python 3.8 及以上版本 [^3]。 - **虚拟环境管理**:建议在使用 Anaconda 时优先使用 `conda` 工具来管理依赖项,因为 `conda` 能更好地处理包之间的依赖关系。如果某些包无法通过 `conda` 安装,则可以使用 `pip` 进行补充安装 [^1]。 - **Python 2 与 Python 3 的过渡**:虽然 Python 2 已经于 2020 年停止官方支持,但在某些遗留项目中仍可能需要使用 Python 2。在这种情况下,可以通过 Anaconda 创建一个使用 Python 2 的虚拟环境来满足需求 [^2]。 - **验证环境**:在使用 Anaconda 进行开发时,建议定期验证当前环境的 Python 版本版本,以确保它们与项目需求一致。可以通过以下命令查看当前环境的 Python 版本: ```bash python --version ``` ### 总结 AnacondaPython 3 的兼容性主要取决于 Anaconda版本项目所需的 Python 版本。通过合理使用 `conda` 创建虚拟环境,可以灵活地管理不同项目对 Python 版本的需求。此外,建议在使用 Anaconda 时优先使用 `conda` 工具来安装管理依赖项,以避免潜在的兼容性问题 [^1]。 ---
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值