先来题目链接
http://hihocoder.com/problemset/problem/1398
分析:
这是一个很有意思的算法,真心佩服搞出这种算法的人。。宛如天上的繁星,我等只能仰视。
概念:
简单割:割(S,T)中每一条割边都与s或者t关联,这样的割叫做简单割。
此时的最小割 一定是简单割
很简单,因为如果不跟S,T相连,那么容量就变成正无穷了
闭合子图:给定一个有向图,从中选择一些点组成一个点集V。对于V中任意一个点,其后续节点都仍然在V中
简单割一定和一个闭合子图对应 ,因为都在S 或 T 集合中
最小割就是最大权的闭合子图
首先有割的容量C(S,T)=T中所有正权点的权值之和+S中所有负权点的权值绝对值之和。
闭合子图的权值W=S中所有正权点的权值之和-S中所有负权点的权值绝对值之和。
则有C(S,T)+W=T中所有正权点的权值之和+S中所有正权点的权值之和=所有正权点的权值之和。
所以W=所有正权点的权值之和-C(S,T)
结论:最大权闭合子图的权值等于所有正权点之和减去最小割
做法:
首先建立源点s和汇点t,将源点s与所有权值为正的点相连,容量为权值;
将所有权值为负的点与汇点t相连,容量为权值的绝对值;
权值为0的点不做处理;同时将原来的边容量设置为无穷大
#include <cstdio>
#include <iostream>
#include <cstring>
#include <queue>
using namespace std;
static const int INF = 1e9;
static const int MAXN = 100000;
struct Edge
{
int from,to,cap,flow;
Edge(int f,int t,int c,int ff)
:from(f),to(t),cap(c),flow(ff) {};
};
vector<Edge> edges;
vector<int> G[MAXN];
int N,M,S,T,i,j;
int iter[MAXN],level[MAXN];
bool vis[MAXN];
void add_edge(int from,int to,int cap)
{
edges.push_back(Edge(from, to, cap, 0 ));
edges.push_back(Edge(to, from, 0, 0));
int sz = edges.size();
G[from].push_back(sz-2);//¼Ç¼ÔÚEdge ÀïÃæµÄλÖÃ
G[to].push_back(sz-1);
}
bool BFS( )
{
// printf("!\n");
memset(vis,false,sizeof(vis));
level[S] = 0;
vis[S] = 1;
queue<int>Q;
Q.push(S);
while(!Q.empty())
{
int u = Q.front();
Q.pop();
for(int i = 0 ; i < G[u].size() ; ++i)
{
Edge& e = edges[G[u][i]];
if(!vis[e.to]&&e.cap > e.flow)
{
vis[e.to] = 1;
level[e.to] = level[u] + 1;
Q.push(e.to);
}
}
}
return vis[T];
}
int DFS(int u,int a)
{
// printf("@\n");
if(u == T || a == 0)
return a;
int f, flow = 0;
for(int& i = iter[u]; i < (int)G[u].size(); ++i)
{
Edge& e = edges[G[u][i]];
if(level[e.to] == level[u] + 1 && (f = DFS(e.to, min(a,e.cap - e.flow))) > 0 )
{
e.flow += f;
edges[G[u][i]^1].flow -= f;
flow += f;
a -= f;
if( a == 0 )break;
}
}
return flow;
}
int Dinic( )
{
int res = 0 ;
while(BFS())
{
memset(iter,0,sizeof(iter));
res += DFS(S,INF);
}
return res;
}
void Init()
{
S = 0;
T = N+M+1;
for(int i = 0; i <= T; ++i)
G[i].clear();
edges.clear();
}
bool Solve( )
{
cin >> N >> M ;
Init( );
int sum = 0 ;
for(int i = 1 ; i <= M ; ++i)
{
int b ;
cin >> b;
add_edge(N+i,T,b);
}
for(int i = 1 ; i <= N ; ++i)
{
int a ;
cin >> a;
sum += a;
add_edge(S,i,a);
int x;
cin >> x;
while( x-- )
{
int b;
cin >> b;
add_edge(i,N+b,1e9);
}
}
cout << sum - Dinic() << endl;
}
int main( )
{
Solve();
}