LeetCode 数组专栏:119. 杨辉三角 II(Java版)

本文介绍了一种优化算法,用于在O(k)空间复杂度下求解杨辉三角的第k行。通过使用组合数学中的公式C(n-1,m-1),避免了传统算法中需要存储所有前n-1行数据的问题,从而显著提高了算法的效率。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目描述:给定一个非负索引 k,其中 k ≤ 33,返回杨辉三角的第 k 行。
这里写图片描述

在杨辉三角中,每个数是它左上方和右上方的数的和。

示例:

输入: 3
输出: [1,3,3,1]

进阶: 你可以优化你的算法到 O(k) 空间复杂度吗?

解题思路:本题的难点在于时间复杂度要求降至O(k),我们知道如果是普通算法,那么时间复杂度为O(n²),因为要计算第n行,必须知道第1-n-1行的所有数据。
那么我们可不可以无需知道前n-1行的数据而直接得出第n行的值呢,于是我在网上搜索了关于杨辉三角的数学知识,其中有一个数学公式便可以做到。

杨辉三角形的第n行的m个数可表示为 C(n-1,m-1).

于是问题就迎刃而解了,下面贴出AC代码:

class Solution {
    public List<Integer> getRow(int rowIndex) {
        List<Integer> res = new ArrayList<Integer>();
        long nk = 1;
        for (int i = 0; i <= rowIndex; i++) {
            res.add((int)nk);
            nk = nk * (rowIndex - i) / (i + 1);
        }
        return res;
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值