YOLOV3学习笔记(噼里啪啦up主)
YOLOV3上面的IOU LOSS是错误的,因为在两个候选框和目标框围成的面积相同时,YOLOV3并没有告诉网络应该选哪个候选框。
2.
在YOLOV3中判断候选框是否有目标物体,confidence是重要指标,而在YOLOV3中confidence大小,是通过IOU loss 判断的。
YOLOV3上IOU LOSS 计算方式如下图所示:
2.1是对YOLOV3中的iou loss计算的第一次改进
2.2
GIOU LOSS 的不足的地方
2.3由于GIOU LOSS也存在不足,所有又进行了改进,DIUO LOSS ,这个损害函数计算方法,解决了YOLOV3本身的IOU loss 的不足,也解决了GIOU LOSS的不足,
2.4
但是Diou LOSS 依然不是最完美的,因为它还有不足,状态2更好,因为状态2框的形状和目标框的形状更接近。所以提出了最终的CIUO LOSS
2.5
2.6在做NMS时使用的是DIOU LOSS
后面4个数据是目标边界框的相对位置
图片的路径
6.
7.
9.
10.
freeze-layers 设置成True就只会训练下面这些,其他的权重会被冻结
freeze-layers 设置成fALSE就只会冻结Darknet53这个网络,其他权重会得到训练。
如果要想得到好的效果,可以把frezee_layer 设置为True,让它训练最后3个分类层,然后把freeze_layer设置成Flase,让它训练除Darknet的其他权重。
12.
多GPU并行指令。
13.
14.
15.
平衡正负样本,但是由于cls_pw和obj_pw都是取值为1,所以在这来是没有用的
16.
25是每个候候选框的预测信息
5个值加20个类别= 25
这里面会保存,训练过程中产生的一系列文件。
18.会生成一系列的COCO数据集的评判标准。
19.查看训练过程中生成的图像
21.对最后的损失求平均的操作。
22.默认都没有去使用
25、