
tensorrt及其他环境安装
文章平均质量分 86
深度学习加速使用或其他环境安装
bug生成中
专注深度学习、人工智能行业。主要使用python、c++代码。
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
ESP32-CAM带摄像头的开发板使用-环境安装
首先是需要在开发板上搭建环境,其实就是将安装包给下载到开发板上,然后程序能在开发板上运行并控制开发板,这一下载过程也称为烧录。首先我这里使用ESP32-CAM纯粹是因为便宜,所以买啦 哈哈哈 我买的是30多带摄像头的,比较主要是拿来做图像识别的。言归正传,首先是需要对环境进行一个安装,这里用的MicroPython编程语言。我这里杜邦线和底座之间没有排针,我就用订书机的钉子代替连接,效果也是可以的。说明买的型号不一样,我们这个是专门的有个底座,这个底座设计的有点问题。首先要有个IDE,这里是Thonny。原创 2024-01-20 16:05:04 · 2174 阅读 · 0 评论 -
tensorrtx-yolo版tensorrt环境安装
首先把tensorrtx-yolov5-v7.0目录下的yolov5目录下的gen_wts.py和下载的yolov5s.pt拷贝到yolov5-7.0目录下。再将tensorrtx-yolov5-v7.0\yolov5目录下的yolov5_det_trt.py拖到build\Release文件夹下即可。在常规-输出目录中配置路径E:\dataset3\tensorrtx-yolov5-v7.0\yolov5\build\Release\。如果需要用python运行py代码来处理,需要先生成dll文件。原创 2024-01-15 20:30:25 · 421 阅读 · 0 评论 -
yolov7_Obb环境安装
接下来是安装python pytorch和cuda的环境,这三者要相互对应,pytorch对应的如果安装的cuda11.1或cuda11.8就无法匹配相对于的nvidia的cuda了,然后我这里安装了cuda11.3,nvidia的cuda也是11.3。这个一般是因为没有在c++的环境里面去运行,我们可以找到安装环境中的VsDevCmd.bat,找不到路径的可以使用Everything对路径进行查找。我这里是安装在D盘下。完成安装之后,我们cmd弹出的命令行输入nvcc -V查看是否安装好了cuda。原创 2024-01-15 20:26:43 · 555 阅读 · 0 评论 -
安装tensorrt环境在linux上
nvidia-smi命令后有内容弹出而没有报错,表明系统中安装了NVIDIA显卡驱动,并且该命令成功地显示了有关NVIDIA GPU的信息。输入nvcc -V并且看到输出时,这表明您的系统中已经安装了NVIDIA的CUDA工具包,并且该命令成功地显示了CUDA编译器版本的信息。这里是租的ubuntu远程服务器gpu版本,所以nvidia的驱动和cuda都是安装上了。因为我们当前路径是在root下,所以解压的文件在root文件夹下。的前置工作就完成了,接下来我们进行。安装包拖过去后,输入命令完成解压。原创 2024-01-03 20:07:05 · 2016 阅读 · 0 评论 -
tensorrt环境安装-可用于深度学习模型加速推理
随后将如下TensorRT中的部分文件移动到CUDA主路径下的对应文件夹内。默认安装通常在: C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.3(版本)本文安装主路径在: D:\ProgramFiles\NVIDIAGPUComputingToolkit\CUDA\v11.3。官网的下载地址,这里我安装了8.6的版本,基本上cuda11.0-11.8系列都支持,在windows上运行。依次输入以下命令安装tensorrt的环境。原创 2023-12-26 21:37:41 · 1095 阅读 · 0 评论