【操作系统·考研】设备独立性软件

1.磁盘高速缓存(Disk Cache)

OS使用磁盘高速缓存来提高磁盘的I/O速度,对磁盘高速缓存的访问要比对磁盘数据的直接访问更为高效。
磁盘高速缓存技术不同于常规意义下的介于CPU和内存之间的小容量高速存储器,而是利用内存中的存储空间暂存从磁盘中读出的一系列盘块中的信息,因此,磁盘高速缓冲物理上是驻留在内存中的盘块,逻辑上属于磁盘。

高速缓存在内存中分为两种形式,一种是在内存中开辟一个单独的空间作为磁盘高速缓存;另一种是把未利用的内存空间作为一个缓冲池,供请求分页系统和磁盘I/O时共享。

2.缓冲区(Buffer)

2.1 概述

引入缓冲区技术的目的:

  1. 缓和CPU与I/O设备间速度不匹配的矛盾。
  2. 减少对CPU的中断频率,放宽对CPU中断响应时间的限制。
  3. 解决基本数据单位(数据粒度)不匹配的问题。
  4. 提供CPU与I/O设备之间的并行性。

2.2 实现方法

2.2.1 硬件缓冲器

但是硬件缓冲器成本太高,除了一些关键部位外,其他地方一般很少使用硬件缓冲器。

2.2.2 缓冲区(位于内存区域)

2.2.2.1 单缓冲

在内存中设置一个缓冲区,当设备和处理机需要交换数据时,先将数据写入缓冲区,然后需要数据的设备或处理机就从缓冲区取走数据。在一方写入或取出数据的过程中,另一方需要等待。
image.png

通常认为 工作区大小 ≈ 缓冲区大小

单缓冲区对每块数据的处理用时为max(C,T) + M

2.2.2.2 双缓冲

由于在数据传送时间M内,CPU处于空闲状态,因而CPU的利用率不高,因此引入双缓冲。I/O设备输入数据时先装填数据到缓冲区1,在缓冲区1装满后再去装填缓冲区2,与此同时处理机可以从缓冲区1取出数据送入工作区,当缓冲区1中的数据处理完之后,若缓冲区2的数据已经填满,则处理机又从缓冲器2取出数据进行处理,而此时I/O设备可能又把缓冲区1的数据填满了,然后如此反复。
image.png

双缓冲区对每块数据的处理用时为max(C + M,T)

以下是彩色图像的PSNR、SSIM、LPIPS和CIEDE2000评价算法的Matlab源码示例: 1. PSNR(峰值信噪比): ```matlab function psnr_value = PSNR(original, distorted) [M, N, ~] = size(original); mse = sum((original(:) - distorted(:)).^2) / (M * N * 3); max_value = max(original(:)); psnr_value = 10 * log10(max_value^2 / mse); end ``` 2. SSIM(结构相似性指数): ```matlab function ssim_value = SSIM(original, distorted) K1 = 0.01; K2 = 0.03; L = 255; C1 = (K1 * L)^2; C2 = (K2 * L)^2; original = double(original); distorted = double(distorted); mean_original = filter2(fspecial('gaussian', 11, 1.5), original, 'valid'); mean_distorted = filter2(fspecial('gaussian', 11, 1.5), distorted, 'valid'); var_original = filter2(fspecial('gaussian', 11, 1.5), original.^2, 'valid') - mean_original.^2; var_distorted = filter2(fspecial('gaussian', 11, 1.5), distorted.^2, 'valid') - mean_distorted.^2; cov_original_distorted = filter2(fspecial('gaussian', 11, 1.5), original .* distorted, 'valid') - mean_original .* mean_distorted; ssim_map = ((2 * mean_original .* mean_distorted + C1) .* (2 * cov_original_distorted + C2)) ./ ((mean_original.^2 + mean_distorted.^2 + C1) .* (var_original + var_distorted + C2)); ssim_value = mean2(ssim_map); end ``` 3. LPIPS(感知相似性指标):需要下载并使用LPIPS库,源码和使用说明可在https://github.com/richzhang/PerceptualSimilarity 找到。 4. CIEDE2000(CIE 2000色差公式):需要下载并使用CIEDE2000库,源码和使用说明可在https://www.mathworks.com/matlabcentral/fileexchange/46861-color-difference-cie-de2000 找到。 以上是基本的示例代码,用于评估图像质量的不同评价指标。你可以根据实际需求和图像数据进行适当的调整和修改。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

编程旧事

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值