今天跟着教程写了一个我的第一个机器学习算法,之前上课的时候学到了一些原理,但是自己一直没有动手写过,今天晚上花了一点点时间,看了一下教程,用python写了一下。
做一下记录,以便以后查阅。
#第一个机器学习算法 KNN分类器
from scipy.spatial import distance
def euc(a,b):#计算欧氏距离
return distance.euclidean(a,b)
class ScrappyKnn():
def fit(self,X_train,y_train):
self.X_train=X_train
self.y_train=y_train
def predict(self,X_test):
predictions=[]
for row in X_test:
label= self.closest(row)
predictions.append(label)
return predictions
def closest(self,row):#这里KNN的思想就不多说了吧,不断的寻找最近的欧氏距离
best_dist=euc(row,self.X_train[0])
best_index=0
for i in range(1,len(self.X_train)):
dist=euc(row,self.X_train[i])
if dist < best_dist :
best_dist = dist
best_index=i
return self.y_train[best_index]
from sklearn import datasets#这里用到的数据集是sklearn自带数据集
x=iris.data
y=iris.target
from sklearn.cross_validation import train_test_split
X_train,X_test,y_train,Y_test=train_test_split(x,y,test_size=.5)#分训练数据和测试数据
iris=datasets.load_iris()#加载自带的鸢尾花数据集
my_classifier=ScrappyKnn()#调用上面写好的KNN分类器
my_classifier.fit(X_train,y_train)#训练
predictions=my_classifier.predict(X_test)
print(predictions)#这一步得出预测标签
#下面将真实标签与预测标签比较一下
from sklearn.metrics import accuracy_score
print(accuracy_score(Y_test,predictions))#正确率