关于生成式模型与判别式模型

本文对比了判别式模型与生成式模型的区别。判别式模型直接从数据集中学习决策边界;而生成式模型则通过学习特征分布来预测新样本的类别。在小数据集情况下,生成式模型的表现更佳。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

判别式模型是

假设Model(实务上是hypothesis)

规定lose function

然后使用algorithm 使得lose function 最小化就会得到Model的参数。

也就是直接从数据集中得到决策边界。

生成式模型是

使用已有的数据集得到特征的分布。一个Label下的分布,比如已知鳕鱼的条件下它的长与宽的分布。(这一步也就有了探究是怎样的特征分布造就了鳕鱼。探究物质生成的原因。)

当新的物体进来之后使用Bayes公式将特征参数带入分布中(已知特征的情况下是XX鱼的概率),得到哪一个Label(鱼)的概率最高就选取哪一个Label作为预测值。

图片源于《马同学图解数学》 

举个栗子


​​​​​​​

 

生成式模型会得到自变量(特征)的分布,这一点更像是让模型学到了事物的本质。比如说学习好的同学在勤劳,方法论,金钱开销的方面服从怎样的分布。真正的理解数据是如何产生的并且可以以此来创造数据出来实现真正意义上的人工智能。

这也就早就了生成式模型的一个应用在小量数据的情况下真真学到了分布会有很友好的预测效果。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Elong_Hu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值