
配准
文章平均质量分 89
CVer儿
开源让世界更美好,闭源让人更富裕
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
MambaMorph brain MR-CT
计算局部归一化互相关损失,用于衡量两个图像之间的相似性。: 通常用于图像配准任务,通过最大化图像之间的局部相似性来优化配准结果。: 使用卷积操作计算局部区域的均值和方差,然后计算归一化互相关。: 计算均方误差损失,用于衡量预测值和真实值之间的差异。: 适用于回归任务,如图像重建或配准。: 直接计算预测值和真实值之间的平方差,并取平均。: 计算Dice系数损失,用于衡量分割结果的重叠度。: 常用于医学图像分割任务,评估分割结果与真实标签的重叠程度。原创 2025-02-11 15:02:32 · 161 阅读 · 0 评论 -
3D刚性配准
这个参数,如果配准效果不好,可以适当提高iteration的数量,但计算速度会变慢。因为需要配准的图像和原始的图像模板相比,除了位移也有旋转、以及形状上的变形。如果两个图像的采集条件不一样,例如用的不同的成像系统,或者信噪比差别较大。,将不同图像中的相应特征或点匹配在一起,以便它们在同一坐标系下对齐。单层血管的特征比较少,单层与单层配准可能因为特征不足,导致配准失败。之前的关于ImageJ的文章,介绍了怎样利用。一般希望输出图像的大小和原始图像大小一致。,是数字图像处理中非常关键的问题之一。翻译 2024-12-19 13:48:01 · 168 阅读 · 0 评论 -
配准损失记录
模型:原创 2024-11-27 00:51:32 · 276 阅读 · 0 评论