剑指offer-重建二叉树C++实现
#include <iostream>
#include <unordered_map>
#include <vector>
using namespace std;
struct TreeNode {
int val;
struct TreeNode *left;
struct TreeNode *right;
TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}
};
class Solution {
public:
unordered_map<int, int> index;
TreeNode *reConstructBinaryTree(vector<int> pre, vector<int> vin) {
for (int i = 0; i < vin.size(); ++i) {
// 下面递归中会根据前序遍历中的根节点值找寻中序遍历中的根节点的位置
// 哈希表index中根据存储策略 - 节点值:索引
index[vin[i]] = i;
}
// 递归重建树
TreeNode *root = build_binary_tree(pre, vin, 0, vin.size() - 1, 0, vin.size() - 1);
return root;
}
private:
// pre:前序遍历
// vin:中序遍历
// p_l:pre_left
// p_r:pre_right
// i_l:vin_left
// i_r:vin_right
TreeNode *build_binary_tree(vector<int> pre, vector<int> vin, int p_l,
int p_r, int i_l, int i_r) {
// 当越过叶子节点时,停止递归回溯到上一个状态
if (p_l > p_r)return nullptr;
// 前序遍历中根节点索引
int p_root = p_l;
// 中序遍历中根节点索引
int i_root = index[pre[p_root]];
// 构建根节点
TreeNode *root = new TreeNode(pre[p_root]);
// 中序遍历中根节点与左边界的距离
int size = i_root - i_l;
// 递归构建左子树
root->left = build_binary_tree(pre, vin, p_l + 1, p_l + size,
i_l, i_root - 1);
// 递归构建右子树
root->right = build_binary_tree(pre, vin, p_l + size + 1, p_r,
i_root + 1, i_r - 1);
return root;
}
};
思路:
这道题总体思路是采用递归不断的构建左子树和右子树,因为给出的是中序遍历和前序遍历,所以可以根据前序遍历找到根节点的值,再根据根节点的值查找中序遍历中根节点的位置。在中序遍历中根据根节点的位置可以划分出左子树和右子树的范围,根据根节点与左边界的距离就可以计算出前序遍历中根节点与左子树的范围,最后采用哈希表存储即可,哈希表的优势在于查找元素的值很快,它的时间复杂度是O(1)。
时间复杂度O(N),空间复杂度O(N)