生成式模型、判别式模型的区别?

本文探讨了生成式模型和判别式模型在机器学习中的区别。生成式模型学习数据的联合概率分布,通过贝叶斯公式进行预测;而判别式模型直接学习条件概率分布,更关注输入特征的差异性。生成式模型需要大量数据,但能用于异常检测,判别式模型数据需求较小,适用于分类任务。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

生成式模型、判别式模型的区别?

​ 对于机器学习模型,我们可以根据模型对数据的建模方式将模型分为两大类,生成式模型和判别式模型。如果我们要训练一个关于猫狗分类的模型,

  1. 对于判别式模型,只需要学习二者差异即可。比如说猫的体型会比狗小一点。
  2. 而生成式模型则不一样,需要学习猫张什么样,狗张什么样。有了二者的长相以后,再根据长相去区分。

具体而言:

  • 生成式模型:由数据学习联合概率分布P(X,Y), 然后由P(Y|X)=P(X,Y)/P(X)求出概率分布P(Y|X)作为预测的模型。该方法表示了给定输入X与产生输出Y的生成关系

  • 判别式模型:由数据直接学习决策函数Y=f(X)或条件概率分布P(Y|X)作为预测模型,即判别模型。判别方法关心的是对于给定的输入X,应该预测什么样的输出Y。

举个例子

来阐述一下,对于性别分类问题,分别用不同的模型来做:

1)如果用生成式模型:

可以训练一个模型,学习输入人的特征X和性别Y的关系。比如现在有下面一批数据:

Y(性别)   0 1
X(特征) 0 1/4 3/4<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

贾世林jiashilin

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值