Yolov5 网络构建代码(2)- Model

在该目录下存放着yolo.py文件,里面的代码是关于网络构建相关的。

里面其实就写了两个class,一个是Detect,一个是Model

Model

首先我们看先看__init__初始化方法

 def __init__(self, cfg='yolov5s.yaml', ch=3, nc=None, anchors=None):  # model, input channels, number of classes
        super().__init__()
        if isinstance(cfg, dict):
            self.yaml = cfg  # model dict
        else:  # is *.yaml
            import yaml  # for torch hub
            self.yaml_file = Path(cfg).name
            with open(cfg, errors='ignore') as f:
                self.yaml = yaml.safe_load(f)  # model dict

        # Define model
        ch = self.yaml['ch'] = self.yaml.get('ch', ch)  # input channels
        if nc and nc != self.yaml['nc']:
            LOGGER.info(f"Overriding model.yaml nc={self.yaml['nc']} with nc={nc}")
            self.yaml['nc'] = nc  # override yaml value
        if anchors:
            LOGGER.info(f'Overriding model.yaml anchors with anchors={anchors}')
            self.yaml['anchors'] = round(anchors)  # override yaml value
        self.model, self.save = parse_model(deepcopy(self.yaml), ch=[ch])  # model, savelist
        self.names = [str(i) for i in range(self.yaml['nc'])]  # default names
        self.inplace = self.yaml.get('inplace', True)

        # Build strides, anchors
        m = self.model[-1]  # Detect()
        if isinstance(m, Detect):
            s = 256  # 2x min stride
            m.inplace = self.inplace
            m.stride = torch.tensor([s / x.shape[-2] for x in self.forward(torch.zeros(1, ch, s, s))])  # forward
            m.anchors /= m.stride.view(-1, 1, 1)
            check_anchor_order(m)
            self.stride = m.stride
            self._initialize_biases()  # only run once

        # Init weights, biases
        initialize_weights(self)
        self.info()
        LOGGER.info('')

一开始是接受的了4个数据  cfg='yolov5s.yaml', ch=3, nc=None, anchors=None

cfg:网络架构配置文件

ch:输入通道数,默认为3

nc:总类别数

anchors:先验框参数。

然后是判断输入的cfg(网络架构文件)是否为字典。一般都不是字典,直接进入else,打开yaml文件,转换成字典格式:

if isinstance(cfg, dict):
    self.yaml = cfg  # model dict
else:  # is *.yaml
    import yaml  # for torch hub
    self.yaml_
### 实现 C2F-SWC 改进 为了在 YOLOv8 模型中实现 C2F-SWC (Convolutional to Frequency Shifted Window-based Convolution) 改进,需引入频率感知级联注意力机制以及移位窗口卷积操作。这不仅能够提升模型的准确性,还能优化计算效率。 #### 修改配置文件 首先,在 `ultralytics/cfg/models/v8` 目录下创建一个新的 YAML 文件并命名为 `yolov8_c2fswc.yaml`[^2]。此文件用于定义新的架构参数: ```yaml # yolov8_c2fswc.yaml nc: 80 # number of classes depth_multiple: 0.33 # model depth multiple width_multiple: 0.50 # layer channel multiple backbone: - [Focus, [64, 3]] # Focus wh information into c-space ... neck: - [C2F_SWC_Block, [256, 3]] ... head: ... ``` #### 添加自定义模块 接着,开发或集成支持 FreqFormer 的 Frequency-aware Cascade Attention 和 SWC(Shifted Window Convolution)。SWC 可以通过小卷积核模拟大卷积核的效果,并利用移位算子来捕捉远距离依赖关系[^3]。 对于 Python 代码部分,假设已经在项目中有相应的类和函数可用,则可以在现有基础上扩展这些功能: ```python import torch.nn as nn class C2F_SWC_Block(nn.Module): """Custom block implementing frequency-aware cascade attention with shifted window convolution.""" def __init__(self, channels_in, kernel_size=3): super().__init__() self.freq_aware_attn = FrequencyAwareCascadeAttention(channels_in) self.shift_conv = ShiftedWindowConv(kernel_size) def forward(self, x): out = self.freq_aware_attn(x) out = self.shift_conv(out) return out ``` 上述代码片段展示了如何构建一个融合了频域特征处理与空间变换的新组件。该组件先应用频率感知注意机制调整输入张量的空间分布特性;随后采用带有移位策略的小尺寸滑动窗执行局部聚合操作,从而有效增强了感受野范围内的上下文关联度。 最后一步是在训练过程中验证新结构的有效性和稳定性,确保其能带来预期性能上的增益。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值