构建一个高效的 RAG(检索增强生成)知识库,其核心在于提供高质量、易于理解和处理的文档。下面详细介绍 RAG 知识库对文档的主要要求,然后再补充一些细节和建议。
要求维度 | 具体要求 | 说明与建议 |
---|---|---|
📄 文档格式 | 优先选择 Markdown (.md)、DOCX、TXT | Markdown格式对表格、公式、图片等复杂格式支持较好。 |
慎用 PDF,尤其是扫描件或复杂排版文件 | PDF解析容易出错,可能包含页眉、页脚、水印等“脏数据”。如必须使用,建议先转换为DOCX或Markdown并检查。 | |
Excel文件需结构清晰,第一行为表头 | 确保每列有明确标题,避免空行,一行代表一条记录。 | |
✔️ 内容质量 | 准确性:避免错误、虚假或矛盾信息 | 错误数据会导致模型生成错误回答。 |
相关性:内容应与知识库领域高度相关 | ||
时效性:定期更新动态领域(如科技、金融)知识 | ||
术语统一:规范文档中对同一实体的不同表述 | 例如统一“ML”、“Machine Learning”和“机器学习”为“机器学习”。 | |
🧱 结构组织 | 逻辑清晰:使用标题层级(H1, H2, H3…)组织内容 | 良好的标题结构能显著提升解析和检索效果。 |
语义完整:确保文本被合理分块(Chunking),避免在句子或段落中间切断 | 可适当添加分段符(如==split== )手动控制分割点。 | |
长度适中:分块长度通常建议在50-1000字(或Token)之间,默认300左右较常见。 | 过长易含无关信息,过短可能导致语义缺失。智能切分策略能更好地保持语义完整性。 | |
⚙️ 预处理与优化 | 转换与清理:将PDF等文件转换为更友好的格式(如Markdown),并清理页眉、页脚、水印等无关内容。 | 注意敏感信息的脱敏。 |
元数据标注:为文档添加标题、来源、时间、关键词等元数据,或利用标签(Tags)进行分类。 | 这能极大提升检索效率和准确性。 | |
语言一致:知识库文档的语言最好与用户查询提示词的语言一致。 |
💡 优化文档效果的技巧
- 巧用标题层级:像写论文一样组织你的文档,使用清晰的标题结构(H1>H2>H3)。这能帮助RAG系统更好地理解上下文和重要性排序。
- 关注分块(Chunking)策略:
- 对于专业性强的文献,可适当增加块长度以保留更多上下文。
- 对于社交媒体或新闻类短文,可缩短块长度以更精确捕捉语义。
- 探索智能切分功能(如果平台支持),它通常比固定长度切分更能保持语义完整。
- 考虑重叠设计:相邻文本块之间可保留少量重叠内容(例如100字左右),这有助于保持上下文的连贯性,确保关键信息不会被割裂。
- 为表格和特殊内容做准备:
- Excel表格:确保第一行是清晰的表头,每列含义明确,数据排列整齐。
- 对于复杂表格、公式,将其转换或重整为Markdown格式通常能被更好地解析和理解。
- 迭代与验证:文档上传入库后,人工检查切片内容的语义完整性和正确性非常重要。根据检索和问答的效果反馈,不断调整和优化你的文档。
⚠️ 注意事项
- 避免使用扫描件或图片型PDF:其中的文字无法被有效提取,除非经过OCR处理,但OCR识别可能引入错误。
- 注意文件大小限制:不同平台对单个文件的大小限制不同(常见如20MB或100MB),上传前需确认。
- 安全性:在使用在线工具进行格式转换时,如果文档包含敏感信息,需注意数据安全问题。