最小斯坦纳树入门-洛谷模板6192

本文介绍了如何解决最小斯坦纳树问题,它要求连接图中的k个关键点,以达到最小的边权和。通过动态规划的方法,包括状态压缩,利用最短路径算法来转移状态。文章提供了问题定义、解决思路,并引用了洛谷模板P6192作为基本解题模板。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

2023大厂真题提交网址(含题解):

www.CodeFun2000.com(http://101.43.147.120/)

最近我们一直在将收集到的机试真题制作数据并搬运到自己的OJ上,供大家免费练习,体会真题难度。现在OJ已录入50+道2023年最新大厂真题,同时在不断的更新。同时,可以关注"塔子哥学算法"公众号获得每道题的题解。
在这里插入图片描述

问题前言以及历史:转OI WIKI
问题定义:

给你一张图,问你必须连通 k k k个关键点的最小边权和花费.

n , m ≤ 100 , k ≤ 10 n,m \leq 100 , k \leq 10 n,m100,k10

最小生成树是最小斯坦纳树的一种特殊情况. k = n k=n k=n.

问题解决:

使用状态压缩dp解决此问题。这之前,需要知道一个结论:答案一定是一棵树.
反证:假设有环,我们可以显然可以破环而不破环连通性。所以结果一定是树。

那么令: d p ( i , s ) dp(i,s) dp(i,s)代表以 i i i为这棵树的根,且集合 s s s的点已经被这棵树连通的最小代价。

转移方程:

第一种情况:由它的儿子整个转移给他的: d p ( s , j ) + w ( j , i ) → d p ( s , i ) dp(s,j)+w(j,i) \rightarrow dp(s,i) dp(s,j)+w(j,i)dp(s,i)

如下图关键点

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值