LaTeX常用数学公式语法

加减乘除

(a+b)+(a−b)+(a×b)+(a÷b) (a + b) + (a - b) + (a \times b) + (a \div b) (a+b)+(ab)+(a×b)+(a÷b)

约等:\approx

a≈b {a}\approx{b} ab

小于等于:\leq

a≤b {a}\leq{b} ab

大于等于:\geq

a≥b {a}\geq{b} ab

不等于:\neq

a≠b {a}\neq{b} a=b

上标和下标:使用^表示上标,使用_表示下标

a2xi a^2x_i a2xi

分数:使用\frac{a}{b}表示分数

12+14=34 \frac{1}{2} + \frac{1}{4} = \frac{3}{4} 21+41=43

开根号:使用\sqrt{a}表示开根号

22 2\sqrt{2} 22

xn \sqrt[n]{x} nx

累加:使用\sum表示累加

∑i=1n1x2 \sum_{i=1}^n\frac{1}{x^2} i=1nx21

累乘:使用\prod表示累乘

∏i=0n1xi2 \prod_{i=0}^n\frac{1}{x_i^2} i=0nxi21

积分:使用\int表示积分

∫01x2dx \int_0^1x^2{\rm d}x 01x2dx

∫−∞+∞x2dx \int_{-\infty}^{+\infty}x^2{\rm d}x +x2dx

∫−∞+∞∫−∞+∞f(x,y)dxdy \int_{-∞}^{+∞}\int_{-∞}^{+∞}f(x,y){\rm d}x{\rm d}y ++f(x,y)dxdy

∬ \iint

∬D \iint\limits_D D

∭ \iiint

∮ \oint

∯ \oiint

排列组合

AnkAnkCnkCnk∁nk A_n^k {\rm A}_n^k C_n^k {\rm C}_n^k \complement_n^k AnkAnkCnkCnknk

向量:\vec{a}

a⃗ \vec{a} a

AB→ \overrightarrow{AB} AB

绝对值:\lvert{x}\rvert

∣x∣ \lvert{x}\rvert x

求极限:\lim

lim⁡n→+∞1n(n+1) \lim_{n\rightarrow+\infty}\frac{1}{n(n+1)} n+limn(n+1)1

lim⁡x→x0y→y01n(n+1) \lim_{x→x_0\atop y→y_0}\frac{1}{n(n+1)} yy0xx0limn(n+1)1

黑体加粗:\boldsymbol{x}

x \boldsymbol{x} x

大括号

{x=φ(t)y=ψ(t) \left\{\begin{aligned} x & = φ(t) \\ y & = ψ(t) \end{aligned}\right. {xy=φ(t)=ψ(t)

f(x)={x=cos⁡(t)y=sin⁡(t)z=xy f(x)=\left\{\begin{aligned} x & = \cos(t) \\ y & = \sin(t) \\ z & = \frac xy \end{aligned}\right. f(x)=xyz=cos(t)=sin(t)=yx

E(X)={∑k=1∞xkpk,离散型∫0+∞xf(x)dx,连续型 E(X)=\left\{\begin{aligned} \sum\limits_{k=1}^∞x_kp_k \qquad&\quad ,离散型 \\ \int_0^{+∞}xf(x)dx &\quad ,连续型 \end{aligned}\right. E(X)=k=1xkpk0+xf(x)dx,离散型,连续型

箭头上写字

A←n=0B→Tn>0C A \xleftarrow{n=0} B \xrightarrow[T]{n>0} C An=0Bn>0TC

↔12 \xleftrightarrow[1]{2} 21

罗尔定理⇌推广特例拉格朗日中值定理⇌推广特例柯西中值定理 罗尔定理 \underset{特例}{\xrightleftharpoons{推广}} 拉格朗日中值定理\underset{特例}{\xrightleftharpoons{推广}}柯西中值定理 罗尔定理特例推广拉格朗日中值定理特例推广柯西中值定理

∯Σ∣y∣ dS=轮换对称性13∯Σ(∣x∣+∣y∣+∣z∣) dS \oiint\limits_Σ|y|\ {\rm d}S\xlongequal{轮换对称性}\dfrac{1}{3}\oiint\limits_Σ(|x|+|y|+|z|)\ {\rm d}S Σy dS轮换对称性31Σ(x+y+z) dS

等价箭头:\Leftrightarrow

⇔ \Leftrightarrow

推导箭头:\Rightarrow

⇒ \Rightarrow

方程组

{a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3 \begin{cases} a_1x+b_1y+c_1z=d_1 \\ a_2x+b_2y+c_2z=d_2 \\ a_3x+b_3y+c_3z=d_3 \end{cases} a1x+b1y+c1z=d1a2x+b2y+c2z=d2a3x+b3y+c3z=d3

三角形:\triangle

△ABC \triangle{ABC} ABC

相似:\sim

△ABC∼△DEF {\triangle{ABC}}\sim{\triangle{DEF}} ABCDEF

角度:\angle

∠ABC=∠DEF \angle{ABC}=\angle{DEF} ABC=DEF

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

fearIess233

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值