粒子滤波(Particle Filter, PF),又称为序贯蒙特卡罗方法,是一种用于非线性、非高斯动态系统的状态估计方法。粒子滤波通过对状态空间进行离散化,并使用随机采样的方式来估计系统的状态。与扩展卡尔曼滤波(EKF)不同,粒子滤波不需要对系统模型进行线性化,这使得它在处理高度非线性问题时表现出色。
1. 基本概念
粒子滤波基于贝叶斯滤波框架,采用随机采样的方法来估计状态概率分布。它通过一组称为“粒子”的样本来表示系统的状态,并用这些粒子来估计系统的状态分布。
2. 算法步骤
粒子滤波的主要步骤包括:
2.1 初始化
首先,生成一组粒子来表示初始状态的概率分布。这些粒子可以根据初始状态的先验知识进行随机采样。
初始化粒子:
其中,是第 i个粒子的初始状态,N是粒子的总数。
2.2 预测步骤
&nb