粒子滤波算法——基本原理(附MATLAB程序)

      粒子滤波(Particle Filter, PF),又称为序贯蒙特卡罗方法,是一种用于非线性、非高斯动态系统的状态估计方法。粒子滤波通过对状态空间进行离散化,并使用随机采样的方式来估计系统的状态。与扩展卡尔曼滤波(EKF)不同,粒子滤波不需要对系统模型进行线性化,这使得它在处理高度非线性问题时表现出色。

1. 基本概念

         粒子滤波基于贝叶斯滤波框架,采用随机采样的方法来估计状态概率分布。它通过一组称为“粒子”的样本来表示系统的状态,并用这些粒子来估计系统的状态分布。

2. 算法步骤

       粒子滤波的主要步骤包括:

2.1 初始化

       首先,生成一组粒子来表示初始状态的概率分布。这些粒子可以根据初始状态的先验知识进行随机采样。

    初始化粒子:

        其中,x^{}{_{0}^{\left ( i \right )}}是第 i个粒子的初始状态,N是粒子的总数。

2.2 预测步骤

&nb

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

leon625

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值