9-leetcode topN问题

本文介绍如何利用优先队列解决两类TopN问题:一是找出数组中出现频率最高的前K个元素;二是找到数组中第K大的元素。通过具体示例展示了优先队列的应用,并提供了Java代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

今天做到了合并元素,使用了优先队列,有点小题大做,但是还是想总结一下,优先队列处理topN问题的好处。

347.前k个高频元素

215. 数组中的第K个最大元素

前k个高频元素

给你一个整数数组 nums 和一个整数 k ,请你返回其中出现频率前 k 高的元素。你可以按 任意顺序 返回答案。

使用优先队列快速A掉,总共花费四分钟,虽然用时看起来吓人

public static int[] topKFrequent(int[] nums, int k) {
        //优先队列解决topn问题
        Map<Integer, Integer> map = new HashMap<>();

        PriorityQueue<Integer> queue = new PriorityQueue<>((x, y) ->
                map.get(y) - map.get(x));

        for (int i = 0; i < nums.length; i++) {
            map.put(nums[i], map.getOrDefault(nums[i], 0) + 1);
        }
        //进行统计完毕后,进行排序操作
        for (Map.Entry<Integer, Integer> entry : map.entrySet()) {
            queue.offer(entry.getKey());
        }
        int[] result = new int[k];
        for (int i = 0; i < k; i++) {
            result[i] = queue.poll();
        }
        return result;
    }

 数组中的第K个最大元素

 

给定整数数组 nums 和整数 k,请返回数组中第 k 个最大的元素。
请注意,你需要找的是数组排序后的第 k 个最大的元素,而不是第 k 个不同的元素。
示例 1:
输入: [3,2,1,5,6,4] 和 k = 2
输出: 5

这道题也可以直接使用优先队列 根堆进行处理

public int findKthLargest(int[] nums, int k) {

        //声明优先队列
        PriorityQueue<Integer> queue = new PriorityQueue<>((x1, x2) -> x2 - x1);

        //可以进行只放前两个数据
        for (int i = 0; i < nums.length; i++) {
            queue.offer(nums[i]);
        }
        for (int i = 0; i < k-1; i++) {
            queue.poll();
        }
        return queue.poll();
}

虽然能快速A掉算法 但是还需要了解一下底层内部排序的操作。

这类问题也可使用快排进行排序,然后去最大值等等都是可行的

如果时间来得及的话感觉还是需要了解一下底层代码,看下官方堆排序的实现

class Solution {
    public int findKthLargest(int[] nums, int k) {
        int heapSize = nums.length;
        buildMaxHeap(nums, heapSize);
        for (int i = nums.length - 1; i >= nums.length - k + 1; --i) {
            swap(nums, 0, i);
            --heapSize;
            maxHeapify(nums, 0, heapSize);
        }
        return nums[0];
    }

    public void buildMaxHeap(int[] a, int heapSize) {
        for (int i = heapSize / 2; i >= 0; --i) {
            maxHeapify(a, i, heapSize);
        } 
    }

    public void maxHeapify(int[] a, int i, int heapSize) {
        int l = i * 2 + 1, r = i * 2 + 2, largest = i;
        if (l < heapSize && a[l] > a[largest]) {
            largest = l;
        } 
        if (r < heapSize && a[r] > a[largest]) {
            largest = r;
        }
        if (largest != i) {
            swap(a, i, largest);
            maxHeapify(a, largest, heapSize);
        }
    }

    public void swap(int[] a, int i, int j) {
        int temp = a[i];
        a[i] = a[j];
        a[j] = temp;
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

带着希望活下去

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值