凸优化笔记(1) —— 基本概念


基本准备

本科没学过凸优化,想趁着还不是太忙,恶补下数学知识,终究是绕不过去的山。应该会不定时的更新凸优化、矩阵论的相关笔记吧,PRML、计算机视觉、概率图模型希望以后也能写一写笔记。

推荐的书籍:
英文版《Convex Optimization》
中文版(译本)《凸优化》(清华出版社)

推荐视频:
前中科大 凌青老师 (现在好像去了中山大学了)
视频在线地址:b站
网盘下载地址:http://pan.baidu.com/s/1slmHdTz 密码:9h61 (感谢,大智能时代’s Archiver上的分享)

纸质版书的话,英文版有点贵,中文版还好。PDF的话,上面我都给了链接了,英文版是作者的主页,可以免费下载最新版的PDF,中文版好像不是太新。视频的话,在线可以去b站上,下载的话也有网盘地址。不得不说b站真是个神奇的网站,很多斯坦福公开课我也是在上面看的,但是好像现在CS231N找不到。咳咳,扯远了~

另外,为了节省写博客的时间,书上的概念、公式会以截图的形式贴到博客上,重点在于自己的理解,和重点知识的归纳。书归正传,开始基本概念的笔记吧。

1. 数学优化

优化,即在可行解的范围内,找出最优解。用数学的形式可表达如下:
m i n i m i z e    f 0 ( x ) s u b j e c t   t o    f i ( x ) ≤ b i ,    i = 1 , ⋯   , m minimize\: \: f_0\left ( x \right )\\ subject \:to\: \: f_i\left ( x \right )\leq b_i, \: \: i = 1,\cdots ,m minimizef0(x)subjecttofi(x)bi,i=1,,m

,其中,向量x是问题的优化变量, f 0 f_0 f0是目标函数, f i f_i fi是约束函数。关于这个公式具体的定义如书上所言:


在这里插入图片描述

同样,也给出了最优解的概念。另外,目标函数和约束函数并不一定是单一的,都是可以存在多个的。

其实,对于数学优化问题,具体来点讲,比如在用做物理实验或者各种实验获得的数据,来拟合这些数据所表征的函数。假设,这些数据表征的是一个二次函数,即 y = a x 2 + b x + c y=ax^2+bx+c y=ax2+bx+c,在计算机上去拟合只能是去,先有个a、b、c的初始值,带入上述这个形式中,看与真实值的误差多大,然后向着是误差减小的地方来更新a、b、c的值,(有点类似于反向传播)。在这其中,误差就是目标函数,而限制条件,可能就是这些数据都是非负的,等等。优化问题的求解就是在一定的精度内,满足此一实例。就如上面这个问题,当误差在某一阈值之内的时候,求解就算完毕。

希尔伯特说过,问题可被描绘出来,就解决的了80%。而如果优化问题,能被描述出来还能被转换成凸优化问题,那么问题就解决了90%(凌青老师的话)

优化的分类

分类大概为:凸优化与非凸优化,线性优化与非线性优化,(针对目标函数)光滑与非光滑,

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值