目录
通过不同的算法来创建模型,并评估它们的准确度,以便找到最合适的算法。
5 模型实现
5.1 分离出评估数据集
分离出评估数据集是机器学习中常见的步骤,通常通过将数据集分为训练集和测试集来完成。在Python中,你可以使用train_test_split
函数来实现这一步骤。以下是一个简单的示例代码:
from sklearn.model_selection import train_test_split
# 假设X是特征数据,y是目标标签
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
# test_size表示测试集的比例,这里设置为0.2,即20%的数据作为测试集
# random_state用于设置随机种子,确保每次运行代码时划分的训练集和测试集保持一致