bzoj1776[Usaco2010 Hol]cowpol 奶牛政坛

本文详细解析了一道复杂度为 O(n) 的算法题目,通过枚举政党内的所有点与最大深度的点来实现。文章讨论了从正解出发却误判为 n^2 复杂度的情况,并最终通过正确分析得出简洁高效的解决方案。此外,文中还涉及了 DFS 深度优先搜索、LCA 最近公共祖先等算法的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

现在才开始刷gold,我真是水的不行了。。

分析:这道题,,,我一开始想到了正解,但是以为是n^2的直接放弃了。。想半天没想法,,结果看题解之后一脸懵逼,之后才发现原来我复杂度算错了。。你枚举每个政党内所有点与最大深度的那个点,其实是一遍,所有的政党,不就O(n)..然后lca xjb上。。预处理放在dfs外面居然会wa。。一脸懵逼。

#include<cstdio>
#include<cstring>
#include<iostream>
#include<algorithm>
#define fo(i,a,b) for(int i=a;i<=b;i++)
#define fd(i,a,b) for(int i=a;i>=b;i--)
using namespace std;
int n,m;
const int N=5e5+5;
int head[N],go[N],next[N],fa[N][22];
int dep[N],ans[N],a[N];
int tot;
bool vis[N];
struct node
{
    int dep,id;
}b[N];
inline void add(int x,int y)
{
    go[++tot]=y;
    next[tot]=head[x];
    head[x]=tot;
}
inline void dfs(int x)
{
    vis[x]=1;
    int i=head[x];
    while (i)
    {
        int v=go[i];
        if (!vis[v])
        {
            dep[v]=dep[x]+1;
            //fa[v][0]=x;
            dfs(v);
        }
        i=next[i];
    }
}
inline int Lca(int x,int y)
{
    if (dep[x]<dep[y])swap(x,y);
    fd(i,20,0)
    if(dep[fa[x][i]]>=dep[y])x=fa[x][i];
    if (x==y)return x;
    fd(i,20,0)
    if (fa[x][i]!=fa[y][i])
    {
        x=fa[x][i];
        y=fa[y][i];
    }
    return fa[x][0];
}
int main()
{
    scanf("%d%d",&n,&m);
    int root=0;
    fo(i,1,n)
    {
        int x,y;
        scanf("%d%d",&y,&x);
        a[i]=y;
        fa[i][0]=x;
        a[i]=y;
        if (x==0)
        {
            root=i;
            continue;
        }
        add(i,x);
        add(x,i);
    }
    dep[root]=1;
    dfs(root);
    //fo(i,1,n)printf("%d ",dep[i]);
    fo(i,1,n)
    {
        if (b[a[i]].dep<dep[i])
        {
            b[a[i]].dep=dep[i];
            b[a[i]].id=i;
        }
    }
    //fo(i,1,m)printf("%d %d\n",b[i].id,b[i].dep);
    //return 0;
    fo(i,1,n)
    fo(j,1,20)
    fa[i][j]=fa[fa[i][j-1]][j-1];
    fo(i,1,n)
    {
        if (b[a[i]].id==i)continue;
        int x=i,y=b[a[i]].id;
        int lca=Lca(x,y);
        //printf("%d %d %d\n",x,y,lca);
        //printf("%d %d %d\n",dep[x],dep[y],dep[lca]);
        ans[a[i]]=max(ans[a[i]],dep[x]+dep[y]-2*dep[lca]);

    }
    fo(i,1,m)printf("%d\n",ans[i]);
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值