图像检索-Neural Codes for image retrieval(ECCV 2014)

该博客介绍了如何利用卷积神经网络(CNN)特征结合PCA降维技术进行图像检索。作者设计了一种网络结构,提取L5、L6、L7三层的特征编码,并探讨了PCA在降低维度、提升检索效率和效果上的作用。此外,还提出了动态选择维度和使用全局池化层替代全连接层的可能性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Neural Codes for image retrieval(ECCV 2014)

 

一、核心思想

1、主要工作利用卷积神经网络特征结合PCA数据压缩降维、实现图像检索

2、核心工作自设计了一个网络结构、并提取了三种特征编码进行检索

3、网络架构说明

conv-绿色     max-p - 红色      relu-蓝色

1、224x224x3               2、conv11-96; s = 4   

3、conv5-192; s = 1     4、conv3-288; s = 1

5、conv3-288; s = 1     6、conv3-256; s = 1

7、fc   8、fc    9、fc

提取的特征编码为L5 L6 L7 分别使用 没有维度堆叠或者特征融合.

1、模型可以利用与测试数据相关性不大的数据集完成训练,并用该模型生成 测试图像的特征图像

2、模型训练好之后再利用与测试数据有相关的数据集再训练,模型的检索能力提高

4、PCA特征压缩

 维度降低可以提升算法速度、减少内存消耗、并消除冗余、提升算法的效果。

 个人想法:维度的选择可以动态选择、根据主成分的贡献度来抉择。

5、个人看法

网络结构可以直接设计最后的特征层获取到我们想获得的维度.

可以直接利用经典网络的预训练模型再训练相关数据提取特征.

fc层可以被全局池化层代替直接进行编码.

高层次特征数据是否应该再编码,还需考虑.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值