【人脸属性】Age-Gender-Estimate-TF复现步骤

本文介绍了一个基于TensorFlow的年龄性别识别项目,使用imdb-wiki数据集进行训练,并提供了详细的步骤说明,包括环境配置、数据准备、预训练模型使用及训练与测试流程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://github.com/BoyuanJiang/Age-Gender-Estimate-TF

0.环境

ubuntu16.04
python3.6

tensorflow==1.10.0
dlib==19.8.1
opencv-python==4.1.0.25
matplotlib==3.3.1
imutils==0.4.3
numpy==1.19.2
pandas==1.1.2
scipy
scikit-learn
scikit-image
tqdm

1.准备与处理数据

https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/static/imdb_crop.tar

https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/static/wiki_crop.tar

处理数据,首先修改convert_to_records_multiCPU.py,在line 120行替换为如下:

'file_name': _bytes_feature(bytes(file_name[index][0], 'utf-8'))}))

再运行下面的,转换为tfrecord: 

python convert_to_records_multiCPU.py --imdb --nworks 8

(这个过程太漫长了,一度以为出错了。7个多小时) 

以/data/train目录为例:

2.准备预训练模型

 https://pan.baidu.com/s/1dFewgqH(大概80多M),按照作者的要求,放到models目录下。

cp ./weight_from_facenet_20170512-110547.zip ./models/
cd models/ && unzip ./weight_from_facenet_20170512-110547.zip && cd ..

3.训练

CUDA_VISIBLE_DEVICES=1 python train.py --lr 1e-3 --weight_decay 1e-5 --epoch 6 --batch_size 128 --keep_prob 0.8 --cuda

这是作者复现的tensorboard可视化结果。 

4.测试

测试部分作者写得很详细:

https://github.com/BoyuanJiang/Age-Gender-Estimate-TF

 

 

 

 

 

 

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

聿默

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值