PAT-1019:General Palindromic Number(回文数)

该博客介绍了PAT编程竞赛中的一道题目——判断一个十进制数在给定基数下是否为回文数。通过提供样例输入和输出,解释了如何确定一个数是否为回文数以及如何将其转换为指定基数的表示。文章内容包括问题定义、解题思路和代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

弱鸡一枚轻喷
更多资料:https://tinuv.me
更好的阅读体验https://tinuv.me/2019/01/19/262.html

题目

1019 General Palindromic Number (20 分)

题目链接

A number that will be the same when it is written forwards or backwards is known as a Palindromic Number. For example, 1234321 is a palindromic number. All single digit numbers are palindromic numbers.

Although palindromic numbers are most often considered in the decimal system, the concept of palindromicity can be applied to the natural numbers in any numeral system. Consider a number N>0 in base b≥2, where it is written in standard notation with k+1 digits a
​i
​​ as ∑
​i=0
​k
​​ (a
​i
​​ b
​i
​​ ). Here, as usual, 0≤a
​i
​​ <b for all i and a
​k
​​ is non-zero. Then N is palindromic if and only if a
​i
​​ =a
​k−i
​​ for all i. Zero is written 0 in any base and is also palindromic by definition.

Given any positive decimal integer N and a base b, you are supposed to tell if N is a palindromic number in base b.

Input Specification:
Each input file contains one test case. Each case consists of two positive numbers N and b, where 0<N≤10
​9
​​ is the decimal number and 2≤b≤10
​9
​​ is the base. The numbers are separated by a space.

Output Specification:
For each test case, first print in one line Yes if N is a palindromic number in base b, or No if not. Then in the next line, print N as the number in base b in the form "a
​k
​​ a
​k−1
​​ … a
​0
​​ ". Notice that there must be no extra space at the end of output.

Sample Input 1:

27 2

Sample Output 1:

Yes

1 1 0 1 1

Sample Input 2:

121 5

Sample Output 2:

No

4 4 1

思路

输入一个数n和一个底数b,判断在b进制下n是不是回文数,如果是输出yes,并输出在b进制下的数,如果不是输出No,并输出b进制下的数

这道题很简单,主要是一个进制转化的问题,进制转化进制转化

代码

#include <iostream>

using namespace std;

int main() {
    int n,b;
    cin>>n>>b;
    int result[100000];
    int cnt = 0;
    while(n!=0) {
        result[cnt] = n%b;
        n = n/b;
        cnt++;
    }
    bool flag = true;
    for(int i=0; i<cnt/2; i++) {
        if(result[i]!=result[cnt-1-i]) {
            flag = false;
        }
    }
    cout<<(flag?"Yes\n":"No\n");
    for(int i=cnt-1;i>=0;i--){
        if(i!=0){
            cout<<result[i]<<" ";
        }else{
            cout<<result[i];
        }
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值