自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(2110)
  • 收藏
  • 关注

原创 数模应用-MATLAB基础知识精讲系列文章目录介绍(持续补充ing)

本专栏以MATLAB基础知识讲解为主,相信有很多刚入门的理工科小伙伴,对于MATLAB这个软件还不是很熟悉,在这里给各位学弟学妹们一个小建议:大学期间数模竞赛如果有机会尽量去参加,一方面是对自己所学知识的一次检验,另外,如果能在比赛中获得好名次的话,对你之后的求职升学等方面都会有很大助力!本专栏的进阶版参见博主的这个专栏,里面详细列举了各类算法的算法原理、应用案例及多种编程语言的代码实现,配合基础篇一起学习能达到事半功倍的效果哦。

2022-10-08 09:03:23 927

原创 数学建模-MATLAB算法精讲系列文章目录介绍(持续补充ing)

结合实际案例,从算法背景开始一步步到最终代码实现,本系列文章主要以matlab代码为主,为照顾学习其他编程语言的小伙伴,大部分算法会附带python、Java、C++、R语言等市面上主流代码,满足各层面的用户学习。部分内容参见网络文献,如有侵权,请联系博主删除本专栏中涉及的MATLAB基础知识讲解篇详见文章内容主要包括算法背景、算法原理、算法优缺点、算法伪代码、算法的应用场景、算法的应用案例、算法的拓展以及多语言实现算法的代码化。

2022-08-30 09:26:54 2938

原创 目标检测YOLO实战应用案例100讲-相机 ISP

ISP(Image Signal Processing) 图像信号处理。主要用来对前端图像传感器输出信号处理的单元,以匹配不同厂商的图像传感器。相机用图像处理器ISP(Image Signal Processor)。被管道化的图像处理专用引擎可以高速处理图像信号。也搭载了为了实现Auto Exposure / Auto Focus / Auto White Balance评测的专用电路。另外,THine开发的减噪等图像处理模块,能令各个CMOS传感器实现最高画质。

2025-09-12 00:30:00 14

原创 MATLAB基础应用精讲-【数模应用】MATLAB R2025a新功能及安装教程

MATLAB R2025a 是一次重大跃进,带来了现代化 UI 架构、AI 助手、增强可访问性与图形交互体验等核心更新。首先,R2025a 引入了基于JavaScript 和 HTML的全新桌面架构,彻底取代旧版 Java 桌面,界面更加现代化,跨平台一致性显著提升,可无缝支持 Windows、macOS、Linux 及 MATLAB Online。其次,桌面新增可定制侧边栏。

2025-09-11 00:30:00 18

原创 目标检测YOLO实战应用案例100讲-相机 ISP(二)

ISP(Image Signal Processing)图像信号处理,主要用来对前端图像传感器输出信号进行处理的单元,以匹配不同厂商的图象传感器。相机用图像处理器ISP(Image Signal Processor)作为被管道化的图像处理专用引擎,可以高速处理图像信号,并搭载了为实现Auto Exposure(自动曝光)/Auto Focus(自动对焦)/Auto White Balance(自动白平衡)评测的专用电路。ISP的目的。

2025-09-10 00:30:00 32

原创 MATLAB基础应用精讲-【数模应用】最速下降法(附python和MATLAB代码实现)

机器学习是一种通过从数据中学习泛化规则的方法,以便在未见过的数据上做出预测或决策的技术。在过去的几年里,机器学习已经成为了人工智能领域的一个热门话题,并且在各个领域得到了广泛应用,如图像识别、自然语言处理、推荐系统等。在机器学习中,我们通常需要解决一个优化问题,即找到一个最佳的模型,使得模型在训练数据上的损失函数达到最小值。这个优化问题可以被表示为一个高维非线性函数的最小化问题。为了解决这个问题,我们需要选择一个合适的优化算法。

2025-09-07 00:30:00 30

原创 MATLAB基础应用精讲-【数模应用】强化学习系列入门笔记

在人工智能飞速发展的今天,有一个词汇无疑是核心中的核心——深度学习。那么什么是深度学习呢?我们可以这样回答,深度学习是机器学习的一个分支,那么什么是机器学习呢?假设我们有一些数据,这些数据可以是结构化的数据,例如一群人的收入,年龄,是否已婚等;也可以是图像、文字等非结构化数据。然后我们期望有一个“有用的机器”输出我们想要的内容,例如银行期望“机器”可以通过某人的收入,年龄,婚姻情况等来判断能给其批准的贷款金额;我们每个人都会期望“机器”可以通过文字的方式来回答我们的问题。

2025-09-03 00:30:00 45

原创 目标检测YOLO实战应用案例100讲-基于边界感知的深度视频显著目标检测(续)

图像合成视频显著目标检测数据集算法在MSRA10K数据集上进行, MSRA10K数据集包含1000张含标签的测试图,每张测试图可以生成五张模拟 视频帧。该方法速度快,能同时输出合成的视频帧对、光流和像素级注释。现有的图像 分割(检测)显著性数据集中的样本数比视频显著目标分割数据集大十到一百个数量级,能够生成足够多的场景。对于图像数据集的每张图像样本I,生成五个模拟帧。图像合成的视频显著目标数据的结果可以在图3-5中观察到。

2025-09-03 00:30:00 48

原创 MATLAB基础应用精讲-【数模应用】共轭梯度法(附python和MATLAB代码实现)

共轭梯度法(Conjugate Gradient)是介于最速下降法与牛顿法之间的一个方法,它仅需利用一阶导数信息,但克服了最速下降法收敛慢的缺点,又避免了牛顿法需要存储和计算Hesse矩阵并求逆的缺点,共轭梯度法不仅是解决大型线性方程组最有用的方法之一,也是解大型非线性最优化最有效的算法之一。在各种优化算法中,共轭梯度法是非常重要的一种。其优点是所需存储量小,具有步收敛性,稳定性高,而且不需要任何外来参数。上述思想可以推广而无需显式对角化。

2025-09-02 08:49:32 38

原创 目标检测YOLO实战应用案例100讲-基于边界感知的深度视频显著目标检测

由于信息与科学的蓬勃发展,信息资源在为人类生活提供了巨大方便的同时,也 向科学研究人员提出了巨大的挑战。信息资源包括音频资源、图像资源、视频资源 等,其中视频资源占信息资源的80%以上。相较于文本信息和图像信息来说,视频 资源更加生动直观便于人类理解接受,但是由于视频的清晰度越来越高,所以传输 视频更加困难,存储视频需要消耗更多的资源,而且随着信息技术的发展,图像和 视频帧的分辨率越来越高,这无疑给视频存储和传输增加了难点。同时,面对道路 交通,医疗影像等任务场景,冗余信息和噪声会给视觉任务带来干扰。

2025-08-30 00:30:00 47

原创 目标检测YOLO实战应用案例100讲-【机器视觉】结构光

三维重构是计算机视觉核心问题之一,相机-投影仪结构光系统是三维重构体系中一个重要分支,结构光系统标定是其众多应用的基础,在某些场景下是其不可或缺的部分。根据标定物不同,标定方法可以粗略地分为基于标定物的传统标定方法和基于场景约束的自标定方法,传统标定方法繁杂且无法在线标定,但精度高;自标定方法操作简单,可以满足一些特殊应用场景,但模型复杂且精度、鲁棒性较差。自标定方法是对传统标定方法的补充,结构光系统的自标定是在相机自标定基础上延伸而来,其目的是为了补充传统标定方法存在的缺陷,也是为了简化操作流程。

2025-08-27 00:30:00 54

原创 MATLAB算法实战应用案例精讲--【大模型】MoE 模型(附python代码实现)

想象一下,一个由专家组成的团队齐心协力解决复杂问题。每位专家都拥有独特的技能,团队通过高效分工取得非凡成就。这正是混合专家 (MoE)模型架构背后的基本理念,这种方法能够帮助机器学习系统(尤其是神经网络)高效扩展。MoE 并非让单个神经网络处理所有任务,而是将工作分配给多个专门的“专家”,并通过门控网络确定每个输入应该激活哪些专家。随着模型变得越来越大、越来越复杂,尤其是在自然语言处理 (NLP) 和法学硕士 (LLM) 领域,最大的挑战之一是在扩展到数十亿甚至数万亿个参数时保持效率和准确性。

2025-08-24 00:30:00 59

原创 基础应用精讲-【自动驾驶】激光雷达

什么是激光、发射激光的激光器有哪些类型,激光器有哪些重要的参数,本文期望能够说清一二。一、激光的诞生激光Laser的英文全称为Light Amplification by Stimulated Emission of Radiation,直译过来就是受激辐射光放大,听起来有点别扭,但其实精确表达了激光产生的原理,而要讲清这个原理,就不得不从物资原子结构聊起。

2025-08-21 00:30:00 64

原创 MATLAB基础应用精讲-【数模应用】图像ISP处理自动白平衡AWB(附MATLAB、C++和python代码实现)

自动白平衡(AWB,Auto White Balance)是图像信号处理流程(ISP)中的核心模块,主要用于消除不同的光源色温对物体真实颜色的影响,以确保在不同光照条件(尤其是不同的色温状况)下白色物体能够被正确还原为白色。之所以需要在ISP处理环节中包含自动白平衡的处理,其背后的主要原因在于,与图像传感器相比,人眼具有卓越的“颜色恒常性”的特性,也就是说,人眼能够自动适应不同色温的变化,这样就可以确保人眼在不同色温下看到的白色都能够基本自动地还原为白色,但图像传感器本身不具备此能力,因此。

2025-08-19 00:30:00 54

原创 MATLAB基础应用精讲-【大模型】MoE 模型(附python代码实现)

混合专家模型(Mixture of Experts, MoE)是一种神经网络架构,它通过一个门控网络(gating network)为每个输入动态地选择一小部分被称为“专家”的子网络进行计算,从而以稀疏激活的方式提升模型容量与计算效率。允许模型总参数量变得极大,单次前向传播的计算成本能保持在可控范围内。核心思想是“分治策略+条件计算”,通过稀疏激活机制(仅调用部分专家)显著提升模型容量与计算效率的平衡性。核心特点在于其“高参数、低计算”的稀疏性。

2025-08-18 09:07:29 92

原创 MATLAB基础应用精讲-【数模应用】卡尔曼滤波(附python代码实现)

卡尔曼滤波器是一种基于状态估计的滤波算法,广泛应用于信号处理、控制系统和导航等领域。其主要思想是通过对系统的动态特性和测量噪声进行建模,利用观测数据进行状态估计和预测,从而提供准确的系统状态估计。1. 系统模型 在融合惯性传感器与GPS数据的定位问题中,我们可以将车辆在惯性传感器坐标系下的位置和速度作为系统状态。而惯性传感器的测量数据则提供了车辆的加速度和姿态角等信息。而GPS数据则提供了车辆相对于全球坐标系的位置和速度。2. 状态预测 卡尔曼滤波器首先利用惯性传感器的测量数据对当前状态进行预测。

2025-08-14 00:30:00 86

原创 目标检测YOLO实战应用案例100讲-基于数据融合的SAR图像中海上目标检测与跟踪(中)

本文使用的数据集为欧空局(European Space Agency, ESA)提供的Sentinal-1 数据集,Sentinel-1是欧洲“哥白尼计划”的SAR卫星机群,主要是用于陆地和海 洋服务的极地轨道全天候昼夜雷达成像任务[ 34]。Sentinel-1A于2014年4月3日发 射升空,Sentinel-1B于2016年4月25日发射升空,每颗卫星都携带C波段SAR, 共同提供地球表面的全天候、昼夜图像。

2025-08-13 00:30:00 76

原创 MATLAB算法实战应用案例精讲-【数模应用】基于扩展卡尔曼滤波器实现GPS数据滤波跟踪(附MATLAB代码实现)

在现代科技的背景下,轨迹跟踪已广泛应用于无人机、机器人、自动驾驶和航空航天领域中。轨迹跟踪的目标是实时估计物体的运动状态,从而实现精准的控制和定位。在轨迹跟踪算法中,卡尔曼滤波是一种常见的、有效的解决方案,它基于贝叶斯滤波理论,通过对观测数据进行递推,实现状态估计和预测。卡尔曼滤波方法的基本框架包括两个步骤:预测和更新。在预测步骤中,通过对当前状态进行线性逆变换,计算出下一时刻的状态和协方差。在更新步骤中,将预测值与观测值进行比较,计算出状态的最优估计和估计误差。

2025-08-12 00:30:00 82

原创 MATLAB基础应用精讲-【强化学习】Actor - Critic 算法(附python代码实现)

这种架构结合了策略梯度方法(Policy - Gradient Methods)和价值函数估计方法(Value Function Estimation Methods)的优点。在强化学习中,智能体(Agent)需要通过与环境(Environment)的交互来学习最优的行为策略,以获得最大的累积奖励(Cumulative Reward)。

2025-08-10 00:30:00 52

原创 MATLAB基础应用精讲-【大模型】群相对策略优化(GRPO)(附python代码实现)

在语言模型的应用中,比如要让模型解出数学题、满足人类对话偏好(例如避免不良输出,或给出更详细解释),我们往往先用大规模的无监督或自监督训练打下基础,然后通过一些“监督微调”(SFT)再进一步让模型学会初步符合需求。然而,SFT 有时难以将人类或某些高层目标的偏好显式地整合进去。这时,“强化学习微调”就登场了。PPO 是其中的代表性算法,但它同样有自己的痛点,比如要维护额外的大价值网络,对内存与计算的需求在大模型场景中不容忽视。GRPO 正是在此背景下闪亮登场。

2025-08-07 00:30:00 48

原创 MATLAB算法实战应用案例精讲-【强化学习】Actor - Critic 算法(附python代码实现)

Actor-Critic 演员评论家算法,一种在强化学习领域广泛应用的混合策略,结合了策略梯度方法(Actor)与价值函数学习方法(Critic)。通过Actor和Critic之间的交互,该算法在复杂任务中展现出优越性能,尤其适用于处理连续动作空间和高维状态空间问题,有效避免了直接使用策略梯度算法时面临的问题。算法原理与推导涉及Actor网络学习策略函数,Critic网络评估状态价值,以及两者之间的交互与更新机制。

2025-08-06 00:30:00 121

原创 MATLAB算法实战应用案例精讲-【大模型】群相对策略优化(GRPO)(附python代码实现)

衡量某个动作比平均表现好多少,用于指导策略更新。

2025-08-05 00:30:00 70

原创 MATLAB基础应用精讲-【自动驾驶】锂枝晶生长(附MATLAB代码实现)

锂枝晶是锂电池在充电过程中锂离子还原时形成的树枝状金属锂结构,这种发生在电池负极表面的现象不仅会影响电池性能和寿命,还会引起安全隐患。锂枝晶的形成可以分为成膜、成核和生长三个阶段。在成膜阶段,锂金属负极与电解液反应形成固态电解质界面膜(SEI),该膜可以隔离电解液和金属锂,但锂离子仍然可以通过并在电极表面沉积。随后,锂离子在沉积过程中被还原成锂原子,并在负极表面不均匀沉积,形成不规则的凸起,直至顶破原始SEI膜。

2025-08-03 00:30:00 206

原创 算法实战应用案例精讲-【自动驾驶】锂枝晶生长(附python代码实现)

锂枝晶在无机固态电解质中的生长与分叉,是阻碍全固态锂金属电池商业化的关键难题。这些枝晶常导致电解质破裂,严重威胁设备的完整性与安全性。尽管无机固态电解质在理论上能抑制枝晶生长,但实际中,即便是机械性能卓越的材料如LLZO,也难以幸免。目前,枝晶生长的机制尚不完全明了,但已有研究指出,这可能与电解质的局部化学不均一性或缺陷有关,这些因素导致析锂现象和枝晶的滋生。枝晶生长的不均匀性又与电解质的晶界、化学不均一性、表面缺陷及内部空洞紧密相关,这些缺陷在机械应力作用下可能引发电解质破裂。

2025-07-31 00:30:00 69

原创 MATLAB算法实战应用案例精讲-【数模应用】K-Means++算法

K-means++ 是一种用于K-Means聚类算法的中心点初始化方法,由 Arthur Szlam等人在2006年提出。K-means++ 旨在解决标准K-Means算法中随机初始化中心点可能导致的局部最优问题,通过一种更智能的方式来选择初始中心点,从而提高聚类的质量。所以,和标准K-Means算法的区别在于,标准算法在初始化中心点时是随机的,而k-means++是根据概率分布。​k个初始化的质心的位置选择对最后的聚类结果和运行时间都有很大的影响,因此需要选择合适的k个质心。

2025-07-30 00:30:00 48

原创 MATLAB基础应用精讲-【数模应用】Lasso回归(附MATLAB、R语言和python代码实现)

一般线性回归模型的目标是最小化残差平方和,即通过拟合一个线性方程来预测目标变量。然而,在实际问题中,可能存在大量的自变量,其中一些可能对目标变量的预测能力较弱或冗余。此时,Lasso回归通过引入L1正则化(即Lasso惩罚项),可以将系数向量中小的权重变为0,从而实现特征选择和模型稀疏性。Lasso回归具备如下几个作用。特征选择:Lasso回归可以用于选择最重要的特征。它通过在优化目标函数中添加一项惩罚项(L1正则化)来实现稀疏性,使得系数向量中很多特征的权重变为0。

2025-07-27 00:30:00 76

原创 目标检测YOLO实战应用案例100讲-机载多源融合目标智能检测(下)

在CNN中,特征提取是一层一层进行的,不同数据样本之间在各个层级的特征可能 存在相关性,比如针对不同频段和平台的SAR图像数据,由于其成像机制相同,在 各个特征层级之间会存在较大的相似性,因此可以根据其共享特征来进行迁移训练。算法通过使用多个不同频段不同平台得到的SAR图像源域数据训练网络模型, 为目标域训练提供可迁移的网络权重,对比不同源域与目标域的相似程度,相近的数 据源使用较大的权重,使其对目标域的网络模型训练提供更多的辅助作用,对差异较 大的数据源使用较少的权重弱化其对目标域检测性能的影响。

2025-07-24 00:30:00 143

原创 目标检测YOLO实战应用案例100讲-机载多源融合目标智能检测(中)

在预测方面,利用了Faster R-CNN中的锚框方 法,并且算法中加入了设置先验框操作,对大尺寸目标设置一个先验框,其他尺寸设 置四个长宽比不同的先验框,通过利用这样的先验信息,使目标检测精度明显提升。下采样倍数较大时,原始的特征信息会出现丢失问题,小 目标的检测效果变差。基于深度学习的目标检测算法利用CNN完成特征提取,通过这种特征提取的方 式可以自发检测及分类待检测图像包含的特征信息,同时利用CNN能将原始输入的 低维图像信息转化为更高维、更抽象的特征信息,适用于复杂场景的目标检测中[ 55]。

2025-07-22 00:30:00 78

原创 算法实战应用案例精讲-【自动驾驶】世界模型

世界模型的最新进展彻底改变动态环境模拟,使系统能够预见未来状态并评估潜在行动。在自动驾驶中,这些功能可帮助车辆预测其他道路使用者的行为、执行风险意识规划、加速模拟训练并适应新场景,从而提高安全性和可靠性。当前的方法在保持强大的 3D 几何一致性或在遮挡处理期间累积伪影方面表现出不足,这两者对于自动导航任务中的可靠安全评估都至关重要。为了解决这个问题,GeoDrive 将强大的 3D 几何条件明确地集成到驾驶世界模型中,以增强空间理解和动作可控性。

2025-07-21 00:30:00 71

原创 MATLAB算法实战应用案例精讲-【大模型】DPO损失函数(附python代码实现)

为了解决标准 DPO 方法中存在的降低偏好样本似然性的问题,作者设计了一种新的损失函数和训练程序,称为 DPO-Positive (DPOP)。DPOP 的核心目标是。它通过在损失函数中引入一个新的惩罚项来实现这一目标,该惩罚项专门用于激励模型维持偏好样本的高对数似然性。DPOP 完整损失函数如下:DPOP 通过其新增的惩罚项来解决 DPO 的失败模式:DPOP 损失函数保留了在 Bradley-Terry 模型下拟合偏好数据的特性。

2025-07-20 00:30:00 78

原创 目标检测YOLO实战应用案例100讲-机载多源融合目标智能检测

面对机载平台下单一传感器在恶劣环境中的观测性能下降的难题,利用多源传感 器集成观测技术可以形成优势互补,保障机载平台高可靠、高精度、全天候观测。因 此,多源融合观测系统在灾情搜救、自然灾害评估、军事目标侦查等领域都发挥着不 可替代的作用。在机载平台的多源观测系统中,获取的数据具有复杂性、多样性,如 何在不同传感器得到的不同背景环境、不同成像分辨率中融合各个传感器的观测优势, 准确快速地检测出特定目标是目前研究的难题。

2025-07-19 00:30:00 85

原创 MATLAB基础应用精讲-【大模型】DPO损失函数(附python代码实现)

随着预训练LLM的发展,在各种任务的零样本和少样本场景中取得了出色的性能。然而,当应用于下游任务时,LLM的性能往往会下降。虽然使用人工微调模型有助于对齐和性能提升,但获得人类对响应的偏好通常更可行。因此,最近的研究转向使用人类偏好微调LLM。人类反馈的强化学习(RLHF):提出通过使用近端策略优化(PPO)等强化算法,使用Bradley-Terry(BT)模型训练的奖励模型来优化最大奖励操作。虽然RLHF增强了模型的性能,但它要应对强化学习中固有的不稳定性、reward hacking和可扩展性等挑战。

2025-07-18 00:30:00 71

原创 目标检测YOLO实战应用案例100讲-YOLOv13超图高阶建模+轻量化模块

YOLOv13是YOLO系列的最新版本,专门针对目标检测任务进行优化。该模型能够实时检测图像中的目标对象并生成精确的边界框。需要注意的是,目前YOLOv13主要支持检测任务。如需进行其他计算机视觉任务(如分割、姿态估计等),建议使用功能更全面的YOLO11版本。YOLOv13提供了多种规模的模型架构以适应不同的应用场景和性能需求。模型规模从小到大依次为Nano (N)、Small (S)、Medium (M)、Large (L)和eXtra Large (X)。

2025-07-15 00:30:00 109

转载 算法实战应用案例精讲-【人工智能】大模型(LLM)推理优化

大多数流行的only-decode LLM(例如 GPT-4、Qwen系列)都是针对因果建模目标进行预训练的,本质上是作为下一个词预测器。「这些 LLM 将一系列tokens作为输入,并自回归生成后续tokens,直到满足停止条件」(例如,生成tokens数量的限制或遇到停止词)或直到生成特殊的<end>标记生成结束的tokens。该过程涉及两个阶段:预填充阶段和解码阶段。请注意,tokens是模型处理的语言的原子部分。一个tokens大约是四个英文字符。所有自然语言在输入模型之前都会转换为tokens。

2025-07-14 00:30:00 93

原创 MATLAB基础应用精讲-【自动驾驶】VLA模型(概念篇)(二)

VLA模型是在视觉语言模型(VLM)的基础上发展而来的。VLM是一种能够处理图像和自然语言文本的机器学习模型,它可以将一张或多张图片作为输入,并生成一系列标记来表示自然语言。然而,VLA不仅限于此,它还利用了机器人或汽车运动轨迹的数据,进一步训练这些现有的VLM,以输出可用于机器人或汽车控制的动作序列。通过这种方式,VLA可以解释复杂的指令并在物理世界中执行相应的动作。

2025-07-13 00:30:00 73

原创 算法实战应用案例精讲-【人工智能】大模型知识科普详细版-「推理基准测试」及其「核心评估指标」

稀疏 MoE 层:取代传统 Transformer 的前馈网络(FFN)层。MoE 层由多个“专家”(如 8 个)组成,每个专家是一个独立的神经网络,通常是 FFN,也可以是更复杂的结构,甚至是嵌套的 MoE 形成层级式结构。门控网络或路由:决定哪些 Token 由哪个专家处理。例如,“More”可能被分配给第二个专家,而“Parameters”可能被分配给第一个。有时,一个 Token 甚至可以被多个专家处理。路由方式由可学习的参数控制,并与整个模型一同训练,是 MoE 关键机制之一。

2025-07-13 00:30:00 47

原创 MATLAB基础应用精讲-【自动驾驶】VLA模型(概念篇)(一)

近年来,视觉 - 语言 - 动作(Vision-Language-Action, VLA)模型的发展成为机器人动作建模研究的重要方向。这类模型通常是在大规模预训练的多模态大语言模型(Multimodal Large Language Models, MLLMs)基础上,添加一个动作输出头或专门的动作模块,以实现对动作的生成。MLLMs 在感知和决策方面表现出色,使得 VLA 模型在多种机器人任务中展现出良好的泛化能力。然而,这些模型存在一个显著的局限性:它们往往缺乏对动作本身的深入理解。

2025-07-11 00:30:00 128

原创 目标检测YOLO实战应用案例100讲-交通目标数据集构建及高性能检测算法研究与应用(下)

针对检测精度较低的事件, 本文系统需要进一步丰富样本,提高目标的检测精度,在此基础上进一步优化判断逻辑, 避免误检漏检的情况发生。接下来对系统中的检测模块及存储模块功能进行测试,在正确载入视频数据后,点 击开始按钮即开始进行检测及存储任务,单相机图像目标检测测试结果如图5.8所示, 在多路视频接入的情况下也能正确的完成目标检测任务,将检测结果实时存储到数据库 中,并将结果正确的显示在图像上,接入12路监控视频的多相机图像目标检测测试结 果及接入16路监控视频的多相机图像目标检测测试结果如图5.9所示。

2025-07-10 00:30:00 81

原创 MATLAB算法实战应用案例精讲-【自动驾驶】VLM多模态人工智能模型

VLM(Visual Language Model)是多模态人工智能模型,融合视觉与语言处理能力,可理解并生成与视觉内容相关的自然语言。是自动驾驶领域从2024年开始就比较火的一个关注方向,很多国内外高校开展了基于VLM的端到端自动驾驶算法的研究,车企也有引用VLM实现自动驾驶功能增强的量产级落地方案。那么VLM模型和怎么选,不同的模型又怎样的特征和性能。能准确、多维度的理解交通场景、物体、意图;视觉与语言特征的自然映射,有海量图-文数据对的训练基础;适合车载硬件部署,满足实时性的要求。

2025-07-09 00:30:00 72

原创 目标检测YOLO实战应用案例100讲-全新YOLOv13发布内容解读

研究问题:目标检测作为计算机视觉领域的核心任务之一,需要在最小延迟下实现对图像中物体的定位与分类。然而,现有的YOLO系列模型(如YOLO11及之前的版本)主要依赖卷积架构进行局部信息聚合,而YOLOv12虽然引入了基于区域的自注意力机制,但仍受限于成对像素相关性的建模能力,无法捕捉全局多层次高阶相关性,在复杂场景中表现存在瓶颈。因此,如何突破这些限制以提升检测精度和鲁棒性,成为亟待解决的问题。

2025-07-05 00:30:00 94

目标检测YOLO实战应用案例100讲-红外弱小目标检测:IPI算法MATLAB代码实现

目标检测YOLO实战应用案例100讲-红外弱小目标检测:IPI算法MATLAB代码实现

2024-05-10

目标检测YOLO实战应用案例100讲-红外弱小目标检测

目标检测YOLO实战应用案例100讲-红外弱小目标检测

2024-05-10

目标检测YOLO实战应用案例100讲-基于yolov6的遥感影像目标识别

目标检测YOLO实战应用案例100讲-基于yolov6的遥感影像目标识别

2024-04-25

目标检测YOLO实战应用案例100讲-基于YOLOv7对水中鱼类的目标检测.part1

目标检测YOLO实战应用案例100讲-基于YOLOv7对水中鱼类的目标检测.part1

2024-04-17

目标检测YOLO实战应用案例100讲-3D Lidar MOT 激光雷达点云 感知 多目标追踪

目标检测YOLO实战应用案例100讲-3D Lidar MOT 激光雷达点云 感知 多目标追踪

2024-04-19

目标检测YOLO实战应用案例100讲-激光雷达的3D目标检测

目标检测YOLO实战应用案例100讲-激光雷达的3D目标检测

2024-04-19

目标检测YOLO实战应用案例100讲-基于YOLOV3的显著性目标检测

目标检测YOLO实战应用案例100讲-基于YOLOV3的显著性目标检测

2024-04-18

目标检测YOLO实战应用案例100讲-基于yolo7的遥感目标检测

目标检测YOLO实战应用案例100讲-基于yolo7的遥感目标检测

2024-04-18

目标检测YOLO实战应用案例100讲-基于YOLOV5的深度学习卫星遥感图像检测与识别

目标检测YOLO实战应用案例100讲-基于YOLOV5的深度学习卫星遥感图像检测与识别

2024-04-18

目标检测YOLO实战应用案例100讲-基于YOLOv7对水中鱼类的目标检测.part2

目标检测YOLO实战应用案例100讲-基于YOLOv7对水中鱼类的目标检测.part2

2024-04-17

目标检测YOLO实战应用案例100讲-yolo7实现遥感目标检测

目标检测YOLO实战应用案例100讲-yolo7实现遥感目标检测

2024-04-16

目标检测YOLO实战应用案例100讲-YOLOV4+DeepSort车流量检测

目标检测YOLO实战应用案例100讲-YOLOV4+DeepSort车流量检测

2024-04-16

目标检测YOLO实战应用案例-基于动态神经网络的目标检测

目标检测YOLO实战应用案例-基于动态神经网络的目标检测

2024-04-15

目标检测YOLO实战应用案例-基于点云数据的3D目标检测与跟踪

目标检测YOLO实战应用案例-基于点云数据的3D目标检测与跟踪

2024-04-15

MATLAB算法实战应用案例精讲-图像处理-FPGA 上使用 SVM 进行图像处理

MATLAB算法实战应用案例精讲-图像处理-FPGA 上使用 SVM 进行图像处理

2024-04-10

MATLAB算法实战应用案例精讲-鹦鹉优化器(PO)(附MATLAB代码实现)

MATLAB算法实战应用案例精讲-鹦鹉优化器(PO)(附MATLAB代码实现)

2024-03-05

MATLAB算法实战应用案例精讲-角蜥优化算法(HLOA)(附MATLAB代码实现)

MATLAB算法实战应用案例精讲-角蜥优化算法(HLOA)(附MATLAB代码实现)

2024-03-05

MATLAB算法实战应用案例精讲-爱情进化算法(LEA)(附MATLAB代码实现)

MATLAB算法实战应用案例精讲-爱情进化算法(LEA)(附MATLAB代码实现)

2024-03-05

MATLAB算法实战应用案例精讲-优化算法正切搜索算法(FTTA)(附MATLAB代码实现)

MATLAB算法实战应用案例精讲-优化算法正切搜索算法(FTTA)(附MATLAB代码实现)

2024-03-05

MATLAB算法实战应用案例精讲-【智能优化算法】基于人类行为的优化算法(HBBO)(附MATLAB源代码)

MATLAB算法实战应用案例精讲-【智能优化算法】基于人类行为的优化算法(HBBO)(附MATLAB源代码)

2023-12-12

目标检测YOLO实战应用-海洋鱼类图像识别数据集

目标检测YOLO实战应用-海洋鱼类图像识别数据集

2025-06-05

目标检测YOLO实战应用-船舶航行轨迹预测数据集

目标检测YOLO实战应用-船舶航行轨迹预测数据集

2025-06-05

MATLAB算法实战应用案例精讲-【数模应用】-第十一届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar

MATLAB算法实战应用案例精讲-【数模应用】-第十一届MathorCup数学应用挑战赛赛题(包含赛题和数据)

2025-02-27

MATLAB算法实战应用案例精讲-【数模应用】-第十三届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar

MATLAB算法实战应用案例精讲-【数模应用】-第十三届MathorCup数学应用挑战赛赛题(包含赛题和数据)

2025-02-27

MATLAB算法实战应用案例精讲-【数模应用】-第十四届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar

MATLAB算法实战应用案例精讲-【数模应用】-第十四届MathorCup数学应用挑战赛赛题(包含赛题和数据)

2025-02-27

MATLAB算法实战应用案例精讲-【数模应用】-第十二届MathorCup数学应用挑战赛赛题(包含赛题和数据).rar

MATLAB算法实战应用案例精讲-【数模应用】-第十二届MathorCup数学应用挑战赛赛题(包含赛题和数据)

2025-02-27

MATLAB基础应用精讲-数模应用DTMF信号分析与仿真(附MATLAB GUI源码)

MATLAB基础应用精讲-【数模应用】DTMF信号分析与仿真(附MATLAB GUI源码)

2025-02-05

MATLAB基础应用精讲-数模应用基于BP神经网络的交通流量预测(附数据及MATLAB源码)

MATLAB基础应用精讲-【数模应用】基于BP神经网络的交通流量预测(附数据及MATLAB源码)

2025-02-05

MATLAB基础应用精讲-【智能优化算法】黏菌算法(SMA)(附MATLAB和python代码实现)

黏菌优化算法(Slime Mould Algorithm, SMA)是一种新兴的自然启发式优化算法,其灵感来源于黏菌(Slime Mould)的觅食行为。黏菌是一种简单的单细胞生物,以其高效的资源分配和路径选择能力闻名。研究人员观察到黏菌在寻找食物的过程中,能够动态调整其形态结构,以最小化能量消耗并优化食物获取,这为优化问题的求解提供了新的思路。

2025-01-10

MATLAB基础应用精讲-数模应用不确定多式联运路径优化问题(附MATLAB多种算法代码实现)

使用AFO算法以及其他GA和PSO算法求解不确定多式联运路径优化问题。同时和MATLAB自带的全局优化搜索器进行对比。 直接运行main.m 需要matlab2021及以后版本。 考虑不确定性的模糊多式联运路径优化研究,可以在满足运输方案经济环保双重要求的同时,增强运输 方案的鲁棒性,提高企业的抗风险能力。本文建立了模糊需求和模糊运输时间下低碳低成本多式联运路径优化模 型,针对连续型元启发式算法无法直接求解离散型组合优化模型的问题,设计了基于优先级的通用编码方式;在 此基础上,为进一步提高算法的求解质量,提出了带启发式因子的特殊解码方式。

2025-01-08

MATLAB基础应用精讲-数模应用数字预失真(DPD)(MATLAB实现源码)

MATLAB基础应用精讲-数模应用数字预失真(DPD)(MATLAB实现源码)

2025-01-06

MATLAB基础应用精讲-数模应用基于PCM编码QAM调制与解调仿真(附MATLAB源代码)

MATLAB基础应用精讲-数模应用基于PCM编码QAM调制与解调仿真(附MATLAB源代码)

2024-12-20

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算GR算法MATLAB源代码

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算GR算法MATLAB源代码

2024-12-16

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算CA算法MATLAB源代码

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算CA算法MATLAB源代码

2024-12-16

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算Itti算法MATLAB源代码

MATLAB基础应用精讲-数模应用基于视觉感知的图像显著计算Itti算法MATLAB源代码

2024-12-16

数学建模基础应用精讲-数模应用禁忌搜索算法求解旅行商问题(附数据和C++源代码实现)

数学建模基础应用精讲-数模应用禁忌搜索算法求解旅行商问题(附数据和C++源代码实现)

2024-12-05

MATLAB基础应用精讲-数模应用图像修复-Criminisi算法MATLAB代码

订阅【数模应用】MATLAB基础知识详讲300篇(持续更新中)专栏的可联系博主要代码,没订阅的请直接购买。

2024-11-21

2024年高教社杯全国大学生数学建模竞赛-完整赛题及数据

2024年高教社杯全国大学生数学建模竞赛-完整赛题及数据

2024-09-06

目标检测YOLO实战应用案例100讲-目标检测YOLOV9论文及源代码

目标检测YOLO实战应用案例100讲-目标检测YOLOV9论文及源代码

2024-05-21

目标检测YOLO实战应用案例100讲-基于YOLOV5的小目标检测

目标检测YOLO实战应用案例100讲-基于YOLOV5的小目标检测

2024-05-11

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除