目标检测YOLO实战应用案例100讲-改进YOLOv4的遥感图像目标检测 (续)

本文介绍了针对遥感图像目标检测的YOLOv4改进方法,包括使用轻量化网络MobileNetV3替代CSPDarkNet53以减小模型大小和计算量,改进非极大值抑制算法提高检测速度,以及引入自注意力机制提升检测性能。实验结果显示,改进后的模型在保持较高检测精度的同时,显著提高了检测速度,适用于资源有限的平台。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

3改进YOLOv4的遥感图像目标检测 

3.1轻量化网络模型  

3.1.1深度可分离卷积 

3.1.2卷积神经网络及分析 

3.2改进非极大值抑制算法 

3.3改进YOLOv4的网络结构  

3.3.1特征提取网络 

3.3.2自注意力机制 

3.3.3改进YOLOv4的网络结构 

3.4遥感图像的目标检测方法  

3.4.1遥感图像预处理 

3.4.2遥感图像目标检测训练流程 

3.4.3遥感图像目标检测方法 

4实验及结果分析 

4.1实验环境及设置 

4.2实验数据集 

4.3实验结果与分析  

4.3.1评价指标 

4.3.2消融实验 

4.3.3实验结果对比与分析 

4.3.4泛化能力验证 

4.3.5遥感图像目标检测可视化结果 


本文篇幅较长,分为上下两篇,上篇详见 改进YOLOv4的遥感图像目标检测

3改进YOLOv4的遥感图像目标检测 


对遥感图像进行目标检测,其旨在从图像中准确定位出所需检测的遥感目标,并确定 目标所属类别。现今基于深度学习的目标检测算法已经在对自然场景图像的检测上有了巨 大的提升,但是这些算法在处理遥感图像时将会面临一些问题。遥感图像普遍背景复杂, 其中的目标尺寸较小,且排列密集,在局部区域可能分布密集也可能分布稀疏,使得特征 提取阶段引入较多的噪声。通常使用特征融合或者引入注意力机制来提高小目标的检测能 力,扩大卷积神经网络感受野,得到更多的细节

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值