MATLAB基础应用精讲-【数模应用】卡尔曼滤波模拟匀加速直线运动(附MATLAB和python代码实现)

目录

前言

算法原理

卡尔曼滤波

问题描述

Kalman滤波的核心理念

第二步,构建观测方程模型

计算流程

详细推导过程

数学模型

卡尔曼滤波

扩展卡尔曼滤波 

状态预测

问题的矩阵形式表示

External influence

External uncertainty

状态更新

利用测量进一步修正状态

合并两个高斯分布

代码实现

python

关键实现说明

扩展方向

MATLAB

关键实现说明

卡尔曼滤波与平滑滤波的对比 

 汽车在一维空间的加速和减速过程


 

前言

卡尔曼滤波使用关联的观测数据来估计目标的状态,并预测目标的未来位置和速度等信息。

目标跟踪过程中,测量数据通常会受到各种噪声的影响,例如传感器噪声、环境干扰等。卡尔曼滤波器可以通过对测量数据和系统模型的加权处理来减少噪声的影响,提供更准确的目标状态估计。

卡尔曼滤波用来估计带噪信号中隐藏的真实信息。

卡尔曼滤波是一种利用线性状态方程,通过系统输入输出观测数据,对系统状态进行最优估计的算法。

由于观测数据中包括系统中的噪声和干扰的影响,所以最优估计也可看作是滤波过程。

卡尔曼滤波利用目标的动态信息,设法去掉噪声的影响,得到一个关于目标位置的估计。这个估计可以是对当前目标位置的估计(滤波),也可以是对将来位置的估计(预测),也可以是对过去位置的估计(插值或平滑)。

卡尔曼滤波本质上是一个数据融合算法,将具有同样测量目的、来自不同传感器、(可能) 具有不同单位 (unit) 的数据融合在一起,得到一个更精确的目的测量值。

卡尔曼滤波基于状态空间模型,将系统的状态建模为一个随时间变化的状态向量,同时考虑了系统的测量值和系统动态之间的关系。它利用贝叶斯推断

的思想,在每个时刻通过融合系统的观测值和先验预测,来估计系统的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

林聪木

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值