Spring AI 集成 DeepSeek

DeepSeek Chat

DeepSeek AI 提供了开源的 DeepSeek V3 模型,以其先进的推理和问题解决能力而闻名。

Spring AI 与 DeepSeek AI 集成,通过重用现有的 OpenAI 客户端来实现。要开始使用,您需要获得 DeepSeek API 密钥、配置基本 URL,并选择支持的模型。

Spring AI 和 DeepSeek 集成
在这里插入图片描述

提示:当前版本的 DeepSeek-chat 模型的功能调用能力不稳定,可能导致循环调用或空响应。

可以查看 DeepSeekWithOpenAiChatModelIT.java 测试,了解如何将 DeepSeek 与 Spring AI 一起使用的示例。

前提条件

  • 创建 API 密钥:访问此链接以创建 API 密钥。然后在 Spring AI 项目中使用 spring.ai.openai.api-key 属性进行配置。
  • 设置 DeepSeek 基本 URL:将 spring.ai.openai.base-url 属性设置为 api.deepseek.com。
  • 选择 DeepSeek 模型:使用 spring.ai.openai.chat.options.model=<模型名称> 属性指定模型。可以参考“支持的模型”部分来选择可用的选项。

环境变量配置示例:

export SPRING_AI_OPENAI_API_KEY=<在此处插入 DEEPSEEK API 密钥>
export SPRING_AI_OPENAI_BASE_URL=https://api.deepseek.com
export SPRING_AI_OPENAI_CHAT_MODEL=deepseek-chat
添加仓库和 BOM

Spring AI 工件已发布到 Maven Central 和 Spring Snapshot 仓库。请参考“仓库”部分,将这些仓库添加到您的构建系统中。

为了帮助进行依赖管理,Spring AI 提供了 BOM(物料清单),以确保在整个项目中使用一致的 Spring AI 版本。请参考“依赖管理”部分,将 Spring AI BOM 添加到构建系统中。

自动配置

Spring AI 为 OpenAI Chat 客户端提供了 Spring Boot 自动配置。要启用此功能,请在项目的 Maven pom.xml 或 Gradle build.gradle 构建文件中添加以下依赖:

Maven 配置:

<dependency>
    <groupId>org.springframework.ai</groupId>
    <artifactId>spring-ai-openai-spring-boot-starter</artifactId>
</dependency>

参考依赖管理部分,将 Spring AI BOM 添加到构建文件中。

聊天属性

重试属性:前缀 spring.ai.retry 用于配置 OpenAI 聊天模型的重试机制。

属性名称描述默认值
spring.ai.retry.max-attempts最大重试次数。0
spring.ai.retry.backoff.initial-interval指数退避策略的初始休眠时间。2 秒
spring.ai.retry.backoff.multiplier退避时间间隔的乘数。5
spring.ai.retry.backoff.max-interval最大退避时间。3 分钟
spring.ai.retry.on-client-errors如果为 false,抛出 NonTransientAiException,并且不针对 4xx 客户端错误代码进行重试。false
spring.ai.retry.exclude-on-http-codes不触发重试的 HTTP 状态代码列表(例如,抛出 NonTransientAiException)。
spring.ai.retry.on-http-codes触发重试的 HTTP 状态代码列表(例如,抛出 TransientAiException)。

连接属性:前缀 spring.ai.openai 用于配置与 OpenAI 的连接。

属性名称描述默认值
spring.ai.openai.base-url连接的 URL。必须设置为 api.deepseek.com-
spring.ai.openai.chat.api-key您的 DeepSeek API 密钥。-

配置属性:前缀 spring.ai.openai.chat 用于配置 OpenAI 聊天模型的实现。

属性名称描述默认值
spring.ai.openai.chat.enabled启用 OpenAI 聊天模型。true
spring.ai.openai.chat.base-url可选项,覆盖 spring.ai.openai.base-url 以提供特定的聊天 URL。必须设置为 api.deepseek.com-
spring.ai.openai.chat.api-key可选项,覆盖 spring.ai.openai.api-key 以提供特定的聊天 API 密钥。-
spring.ai.openai.chat.options.model使用的 DeepSeek LLM 模型-
spring.ai.openai.chat.options.temperature控制生成结果创造力的采样温度。较高的值会使输出更随机,较低的值会使结果更集中且确定性强。建议不要同时修改温度和 top_p,因为这两个设置的相互作用难以预测。0.8
spring.ai.openai.chat.options.frequencyPenalty范围为 -2.0 到 2.0 的数字。正值会根据新令牌在文本中的频率进行惩罚,减少模型重复相同内容的可能性。0.0 f
spring.ai.openai.chat.options.maxTokens在聊天完成中生成的最大令牌数量。输入令牌和生成令牌的总长度由模型的上下文长度限制。-
spring.ai.openai.chat.options.n为每个输入消息生成多少个聊天完成选项。请注意,您将根据所有选项中生成的令牌数量收费。保持 n 为 1 以最小化成本。1
spring.ai.openai.chat.options.presencePenalty范围为 -2.0 到 2.0 的数字。正值会根据新令牌是否已经出现在文本中进行惩罚,增加模型谈论新话题的可能性。-
spring.ai.openai.chat.options.responseFormat一个指定模型输出格式的对象。设置为 { “type”: “json_object” } 启用 JSON 模式,确保模型生成的消息是有效的 JSON。-
spring.ai.openai.chat.options.seed该功能处于 Beta 测试阶段。如果指定,系统会尽力进行确定性采样,以便使用相同的种子和参数的重复请求应返回相同的结果。-
spring.ai.openai.chat.options.stop最多 4 个序列,API 会在这些序列处停止生成更多令牌。-
spring.ai.openai.chat.options.topP一种替代温度采样的方法,称为核采样,模型会考虑具有 top_p 概率质量的令牌的结果。因此,0.1 意味着只考虑具有前 10% 概率质量的令牌。通常建议只更改此项或温度,而不是同时更改两者。-
spring.ai.openai.chat.options.tools模型可能调用的工具列表。目前,只支持将函数作为工具。使用此项提供模型可能生成 JSON 输入的函数列表。-
spring.ai.openai.chat.options.toolChoice控制模型调用哪个(如果有)函数。none 表示模型不会调用任何函数,而是生成消息。auto 表示模型可以在生成消息和调用函数之间选择。通过指定特定函数 {“type”: “function”, “function”: {“name”: “my_function”}} 强制模型调用该函数。没有函数时,none 是默认值。如果存在函数,auto 是默认值。-
spring.ai.openai.chat.options.user一个唯一标识符,表示您的最终用户,有助于 OpenAI 监控和检测滥用行为。-
spring.ai.openai.chat.options.functions要启用的函数列表,这些函数的名称在函数回调注册表中必须存在,用于单个请求中的函数调用。-
spring.ai.openai.chat.options.stream-usage(仅适用于流式处理)设置为添加一个额外的块,包含整个请求的令牌使用统计信息。此块的 choices 字段为空数组,所有其他块也将包含 usage 字段,但值为 null。false
spring.ai.openai.chat.options.proxy-tool-calls如果为 true,Spring AI 将不会内部处理函数调用,而是将它们代理到客户端。然后,由客户端负责处理函数调用,分派到相应的函数,并返回结果。如果为 false(默认值),Spring AI 将内部处理函数调用。仅适用于支持函数调用的聊天模型。false

提示:所有以 spring.ai.openai.chat.options 开头的属性可以通过为提示调用添加特定的运行时选项来覆盖。

运行时选项

OpenAiChatOptions.java 提供了模型配置,如要使用的模型、温度、频率惩罚等。

在启动时,可以使用 OpenAiChatModel(api, options) 构造函数或 spring.ai.openai.chat.options.* 属性配置默认选项。

在运行时,您可以通过向 Prompt 调用中添加新的请求特定选项来覆盖默认选项。例如,要为特定请求覆盖默认模型和温度:

ChatResponse response = chatModel.call(
    new Prompt(
        "Generate the names of 5 famous pirates.",
        OpenAiChatOptions.builder()
            .model("deepseek-chat")
            .temperature(0.4)
        .build()
    ));

提示:除了模型特定的 OpenAiChatOptions,您还可以使用便携的 ChatOptions 实例,它是通过 ChatOptions#builder() 创建的。

函数调用

当前版本的 deepseek-chat 模型的函数调用功能不稳定,可能导致循环调用或空响应。

多模态

注意:目前,DeepSeek API 不支持媒体内容。

示例控制器

创建一个新的 Spring Boot 项目并将 spring-ai-openai-spring-boot-starter 添加到您的 pom(或 gradle)依赖项中。

在 src/main/resources 目录下添加一个 application.properties 文件,以启用并配置 OpenAi 聊天模型:

spring.ai.openai.api-key=<DEEPSEEK_API_KEY>
spring.ai.openai.base-url=https://api.deepseek.com
spring.ai.openai.chat.options.model=deepseek-chat
spring.ai.openai.chat.options.temperature=0.7

# DeepSeek API 不支持嵌入,因此我们需要禁用它。
spring.ai.openai.embedding.enabled=false

请将 api-key 替换为您的 DeepSeek API 密钥。

这将创建一个 OpenAiChatModel 实现,您可以将其注入到您的类中。以下是一个简单的 @Controller 类示例,使用聊天模型生成文本。

@RestController
public class ChatController {

    private final OpenAiChatModel chatModel;

    @Autowired
    public ChatController(OpenAiChatModel chatModel) {
        this.chatModel = chatModel;
    }

    @GetMapping("/ai/generate")
    public Map generate(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
        return Map.of("generation", this.chatModel.call(message));
    }

    @GetMapping("/ai/generateStream")
    public Flux<ChatResponse> generateStream(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
        Prompt prompt = new Prompt(new UserMessage(message));
        return this.chatModel.stream(prompt);
    }
}
参考资料
### 如何在 Spring 框架中集成 DeepSeek AI 平台 #### 1. 添加依赖项 为了使 Spring 应用程序能够与 DeepSeek 进行交互,需引入 `DeepSeek4j` 提供的 Spring Boot Starter。这可以通过修改 Maven 或 Gradle 构建文件来完成。 对于 Maven 用户,在 pom.xml 文件内加入如下片段: ```xml <dependency> <groupId>com.github.pig</groupId> <artifactId>deepseek-spring-boot-starter</artifactId> <version>版本号</version> </dependency> ``` 而对于采用 Gradle 的开发者,则应在 build.gradle 中添加相应条目: ```groovy implementation 'com.github.pig:deepseek-spring-boot-starter:版本号' ``` 此处需要注意替换实际使用的最新版次[^3]。 #### 2. 配置属性设置 接着要定义必要的连接参数以便应用程序可以访问到本地运行着 Ollama 服务实例的位置以及指定所要用到的具体 DeepSeek 模型名。这些配置通常放置于 `application.properties` 或者 YAML 版本的应用配置文件里。 以下是 properties 格式的样例配置: ```properties spring.ai.ollama.base-url=http://localhost:11434 spring.ai.ollama.model=deepseek-model ``` 如果偏好使用 YML 方式表达相同的信息则可写作: ```yaml spring: ai: ollama: base-url: "http://localhost:11434" model: "deepseek-model" ``` 上述 URL 和模型名称应当依据实际情况调整[^2]。 #### 3. 创建客户端并发起请求 有了前面两步打下的基础之后就可以编写业务逻辑代码了。这里给出一段简单的 Java 方法用于展示如何通过 RESTful API 向 DeepSeek 发送查询请求,并接收返回的结果数据。 ```java import org.springframework.beans.factory.annotation.Value; import org.springframework.web.bind.annotation.GetMapping; import org.springframework.web.bind.annotation.RequestParam; import org.springframework.web.bind.annotation.RestController; @RestController public class AiController { private final String baseUrl; private final String modelName; public AiController(@Value("${spring.ai.ollama.base-url}") String baseUrl, @Value("${spring.ai.ollama.model}") String modelName) { this.baseUrl = baseUrl; this.modelName = modelName; } @GetMapping("/query") public String queryAi(@RequestParam String prompt){ // 实际调用 DeepSeek4j SDK 来发送请求... return "模拟响应"; } } ``` 这段示例仅作为概念验证用途;真实场景下还需考虑错误处理机制、超时控制等因素。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值