提醒:该版本仍在开发中,尚未被认为是稳定版本。如需获取最新的快照版本,请使用 Spring AI 1.0.0-SNAPSHOT!
Spring AI 支持 OpenAI 的文本嵌入模型。OpenAI 的文本嵌入用于衡量文本字符串之间的相关性。嵌入是一个浮点数的向量(列表)。两个向量之间的距离表示它们的相关性。小距离表示高相关性,大距离表示低相关性。
先决条件
您需要在 OpenAI 创建一个 API 密钥,以访问 OpenAI 的嵌入模型。
首先,在 OpenAI 注册页面创建一个帐户,并在 API 密钥页面生成令牌。Spring AI 项目定义了一个名为 spring.ai.openai.api-key 的配置属性,您应将其设置为从 openai.com 获取的 API 密钥的值。可以通过导出环境变量来设置该配置属性:
export SPRING_AI_OPENAI_API_KEY=<INSERT KEY HERE>
添加仓库和 BOM
Spring AI 工件发布在 Maven Central 和 Spring Snapshot 仓库中。请参考仓库部分,将这些仓库添加到您的构建系统中。
为了帮助依赖管理,Spring AI 提供了一个 BOM(物料清单),以确保整个项目中使用一致的 Spring AI 版本。请参考依赖管理部分,将 Spring AI BOM 添加到您的构建系统中。
自动配置
Spring AI 提供了 OpenAI 嵌入模型的 Spring Boot 自动配置。要启用它,向您的项目的 Maven pom.xml 文件中添加以下依赖项:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai-spring-boot-starter</artifactId>
</dependency>
或者,添加到您的 Gradle build.gradle 文件:
dependencies {
implementation 'org.springframework.ai:spring-ai-openai-spring-boot-starter'
}
提示:请参考依赖管理部分,将 Spring AI BOM 添加到您的构建文件中。
嵌入属性
重试属性:前缀 spring.ai.retry 用于配置 OpenAI 嵌入模型的重试机制。
属性 | 描述 | 默认值 |
---|---|---|
spring.ai.retry.max-attempts | 最大重试次数 | 10 |
spring.ai.retry.backoff.initial-interval | 指数退避策略的初始睡眠时长 | 2 秒 |
spring.ai.retry.backoff.multiplier | 退避间隔的乘数 | 5 |
spring.ai.retry.backoff.max-interval | 最大退避时长 | 3 分钟 |
spring.ai.retry.on-client-errors | 如果为 false,则抛出 NonTransientAiException,并且不对 4xx 客户端错误代码进行重试 | false |
spring.ai.retry.exclude-on-http-codes | 不应触发重试的 HTTP 状态代码列表 | 空 |
spring.ai.retry.on-http-codes | 应触发重试的 HTTP 状态代码列表 | 空 |
连接属性:前缀 spring.ai.openai 用于配置连接到 OpenAI 的属性。
属性 | 描述 | 默认值 |
---|---|---|
spring.ai.openai.base-url | 连接的 URL | https://api.openai.com |
spring.ai.openai.api-key | API 密钥 | - |
spring.ai.openai.organization-id | 可选,指定用于 API 请求的组织 | - |
spring.ai.openai.project-id | 可选,指定用于 API 请求的项目 | - |
提示:对于属于多个组织的用户(或通过遗留的用户 API 密钥访问其项目的用户),可以指定用于 API 请求的组织和项目。来自这些 API 请求的使用量将计入指定的组织和项目。
配置属性:前缀 spring.ai.openai.embedding 用于配置 OpenAI 的 EmbeddingModel 实现。
属性 | 描述 | 默认值 |
---|---|---|
spring.ai.openai.embedding.enabled | 启用 OpenAI 嵌入模型 | true |
spring.ai.openai.embedding.base-url | 可选,重写 spring.ai.openai.base-url 提供嵌入特定的 URL | - |
spring.ai.openai.chat.embeddings-path | 追加到 base-url 的路径 | /v1/embeddings |
spring.ai.openai.embedding.api-key | 可选,重写 spring.ai.openai.api-key 提供嵌入特定的 API 密钥 | - |
spring.ai.openai.embedding.organization-id | 可选,指定用于 API 请求的组织 | - |
spring.ai.openai.embedding.project-id | 可选,指定用于 API 请求的项目 | - |
spring.ai.openai.embedding.metadata-mode | 文档内容提取模式 | EMBED |
spring.ai.openai.embedding.options.model | 要使用的模型 | text-embedding-ada-002 (其他选项:text-embedding-3-large, text-embedding-3-small) |
spring.ai.openai.embedding.options.encodingFormat | 嵌入返回的格式。可以是 float 或 base64 | - |
spring.ai.openai.embedding.options.user | 表示最终用户的唯一标识符,有助于 OpenAI 监控和检测滥用 | - |
spring.ai.openai.embedding.options.dimensions | 结果嵌入应具有的维度数,仅在 text-embedding-3 及更高版本的模型中支持 | - |
注意:您可以重写公共的 spring.ai.openai.base-url 和 spring.ai.openai.api-key,以适配 ChatModel 和 EmbeddingModel 的实现。如果设置了 spring.ai.openai.embedding.base-url 和 spring.ai.openai.embedding.api-key 属性,则它们将优先于公共属性。同样,如果设置了 spring.ai.openai.chat.base-url 和 spring.ai.openai.chat.api-key 属性,它们将优先于公共属性。这在您希望为不同的模型和不同的模型端点使用不同的 OpenAI 帐户时非常有用。
提示:所有以 spring.ai.openai.embedding.options 为前缀的属性可以在运行时通过在 EmbeddingRequest 调用中添加特定请求的运行时选项来重写。
运行时选项
OpenAiEmbeddingOptions.java 提供了 OpenAI 的配置选项,例如使用的模型等。
默认选项可以通过 spring.ai.openai.embedding.options 属性进行配置。
在启动时,可以使用 OpenAiEmbeddingModel 构造函数来设置所有嵌入请求使用的默认选项。在运行时,您可以使用 OpenAiEmbeddingOptions 实例来覆盖默认选项,并将其作为 EmbeddingRequest 的一部分。
例如,要为特定请求覆盖默认模型名称:
EmbeddingResponse embeddingResponse = embeddingModel.call(
new EmbeddingRequest(List.of("Hello World", "World is big and salvation is near"),
OpenAiEmbeddingOptions.builder()
.model("Different-Embedding-Model-Deployment-Name")
.build()));
示例控制器
这将创建一个 EmbeddingModel 实现,您可以将其注入到您的类中。以下是一个使用 EmbeddingModel 实现的简单 @Controller 类示例。
spring.ai.openai.api-key=YOUR_API_KEY
spring.ai.openai.embedding.options.model=text-embedding-ada-002
@RestController
public class EmbeddingController {
private final EmbeddingModel embeddingModel;
@Autowired
public EmbeddingController(EmbeddingModel embeddingModel) {
this.embeddingModel = embeddingModel;
}
@GetMapping("/ai/embedding")
public Map embed(@RequestParam(value = "message", defaultValue = "Tell me a joke") String message) {
EmbeddingResponse embeddingResponse = this.embeddingModel.embedForResponse(List.of(message));
return Map.of("embedding", embeddingResponse);
}
}
手动配置
如果您没有使用 Spring Boot,可以手动配置 OpenAI 嵌入模型。为此,您需要将 spring-ai-openai 依赖添加到项目的 Maven pom.xml 文件中:
<dependency>
<groupId>org.springframework.ai</groupId>
<artifactId>spring-ai-openai</artifactId>
</dependency>
或者将其添加到您的 Gradle build.gradle 文件中:
dependencies {
implementation 'org.springframework.ai:spring-ai-openai'
}
请参考依赖管理部分,将 Spring AI BOM 添加到您的构建文件中。
spring-ai-openai 依赖还提供了对 OpenAiChatModel 的访问。有关 OpenAiChatModel 的更多信息,请参考 OpenAI 聊天客户端部分。
接下来,创建一个 OpenAiEmbeddingModel 实例,并使用它来计算两个输入文本之间的相似度:
var openAiApi = new OpenAiApi(System.getenv("OPENAI_API_KEY"));
var embeddingModel = new OpenAiEmbeddingModel(
this.openAiApi,
MetadataMode.EMBED,
OpenAiEmbeddingOptions.builder()
.model("text-embedding-ada-002")
.user("user-6")
.build(),
RetryUtils.DEFAULT_RETRY_TEMPLATE);
EmbeddingResponse embeddingResponse = this.embeddingModel
.embedForResponse(List.of("Hello World", "World is big and salvation is near"));
OpenAiEmbeddingOptions 提供了嵌入请求的配置信息。该选项类提供了 builder() 方法,方便您创建选项。