相关与回归 --《深入浅出统计学》第十五章

文章介绍了如何通过散点图分析两个变量之间的线性相关性,以及如何利用最小二乘法求得最佳拟合线,强调了相关性并不等同于因果关系,并提供了相关系数(r)来衡量线性相关性的强度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

excel数据 散点图 直接求得最佳拟合线,相关性。
书籍网盘地址:

链接:https://pan.baidu.com/s/1Bm2nohTSXZCTY9WGp9ihlw 
提取码:rnif

原理:

1、体现两个变量之间的关系,叫散点图散布图
2、散点图显示出数据对之间的相关性。
3、散点图上数据点几乎呈直线分布,则相关性为线性。
4、正相关、负相关、不相关:
在这里插入图片描述

5、两个变量之间存在相关关系并不一定意味着一个变量会影响另一个变量,也不意味着二者存在实际关系。
6、相关性度量关系为线性关系,但并不是所有关都是线性的。
7、最佳拟合线预测数值。
在这里插入图片描述
在这里插入图片描述

8、SSE:误差平方和。
在这里插入图片描述

9、SSE为最小的直线式,其中y=a+bx,可得到a、b最优值,可得到最佳拟合公式。
10、斜率计算
在这里插入图片描述

11、最佳拟合线最好穿过x、y的均值,故求截距。
在这里插入图片描述

12、总结
最小二乘法:
在这里插入图片描述

13、最佳拟合线的准确性—回归线的相关性强度—相关系数
相关系数介于-1和1之间,描述了各个数据点与直线的偏离程度,字母r表示。
r为负,两个变量存在负线性相关;
r为0,不相关;
r为正;两个变量存在正线性相关。
向0靠近,线性相关性减弱。
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值