GAMES101-现代计算机图形学学习笔记(15)
Lecture 15: Ray Tracing 3
原课程视频链接以及官网
b站视频链接: link.
课程官网链接: link.
辐射度量学
上节课的回顾:
Radiant flux (power) 描述了单位时间内的能量
Radiant intensity 描述了光源在单位立体角,单位时间上发出的辐射能量(Radiant flux (power) )
Solid Angle 描述了球面面积与半径的平方之比
既然定义了点光源发出的辐射功率,接下来就继续定义物体表面是如何接收辐射功率的,它是通过 irradiance 来进行描述的。
irradiance
irradiance 与 Radiant intensity 不同,它描述的是接收到的功率:即单位区域面积、单位时间内接收到的辐射能量:
E ( x ) ≡ d Φ ( x ) d A E(\mathbf{x}) \equiv \frac{\mathrm{d} \Phi(\mathbf{x})}{\mathrm{d} A} E(x)≡dAdΦ(x)
这里的面积指的是与光线所垂直的面积,即如果表面与光线存在夹角,需要对其进行投影:
相较于 Radiant intensity ,irradiance 在传播过程中是在衰减的,因为 Radiant intensity 只和角度有关。但是当光源离物体表面越远,角度是不变的,但辐射到的面积却是增大的,所以 irradiance 是逐渐衰减的。
radiance
radiance 是指单位立体角、单位投影面积所辐射的能量。为什么需要 radiance?是因为需要和 irradiance 进行联系,以描述场景中物体接收到的能量以及它向周围所辐射出去的能量。
radiance 的定义如下:
从式子可以看出,通过积分顺序可以定义出不同类型的 radiance。
当先积分 d A dA dA 时,radiance 定义为 Incident Radiance (和入射有关): L ( p , ω ) = d E ( p ) d ω cos θ L(\mathrm{p}, \omega)=\frac{\mathrm{d} E(\mathrm{p})}{\mathrm{d} \omega \cos \theta} L(p,ω)=dωcosθdE(p) 。表示光源通过单位立体角到达物体表面的能量
当先积分 d ω d\omega dω 时, radiance 定义为 Exiting Radiance(和出射有关): L ( p , ω ) = d I ( p , ω ) d A cos θ L(\mathrm{p}, \omega)=\frac{\mathrm{d} I(\mathrm{p}, \omega)}{\mathrm{d} A \cos \theta} L(p,ω)=dAcosθdI(p,ω)。表示单位投影区域离开物体表面的能量
当定义了描述接收辐射能量的概念 irradiance ,和描述发出辐射能量的概念 radiance ,就可将两者联系起来(其实把 radiance 看出是发出辐射能量的概念并不贴切,它更像是描述了单位立体角、单位投影面积的辐射能量的密度),它们两者的联系如下:
从图中我们也可以看出 irradiance 实际上是描述了从所有潜在方向接收到的辐射能量。
BRDF
前面定义了每单位表面如何接收能量的,以及该表面所反射能量的计算方式。那么当表面接收到能量后,它们又是如何将能量从不同方向反射出去的呢?这里就引入了 BRDF 来进行解决。由于不同方向反射的能量是不同的,所以反射出去的能量可以看成是一个分布,BRDF 解决的正是从某个方向辐射到表面的能量,它所辐射到其他方向的能量分布问题,它描述了反射方向上的能量分布 (这一切的前提都是在物体表面会把接收的能量辐射出去的前提下)
定义物体表面单位面积在单位入射立体角 ω i \omega_{i} ωi、单位时间下通过光源入射所接收到的能量 d E i ( ω i ) \mathrm{d} E_{i}\left(\omega_{i}\right) dE