洛谷 1433 吃奶酪 dfs+剪枝

本文针对洛谷1433题提供了一种基于预处理两点间距离的求解策略,通过预处理减少搜索时间,避免超时。文章详细介绍了使用C++实现的具体代码,并分享了三个关键经验教训:预处理重复计算、充分考虑数组大小以及优化搜索过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
https://www.luogu.org/problem/show?pid=1433

思路:
预处理两点距离,不处理可能会TLE(可以卡常),

总结:
1.对于重复性的东西可以预处理,减少搜索时间;
2.搜索尽量做到预处理;
3.数组开大开大!!!!!

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
typedef double dou;
const int MAXN=1210;
int n;
dou ss[16][16],ans=21474;
bool vis[MAXN];
struct hh {dou x,y;}ma[MAXN];
void dfs(int pos,dou tot,int num)
{
    if(tot>=ans) return;
    if(num==n) { ans=min(ans,tot);return;}
    for(int i=1;i<=n;i++)
        if(!vis[i])
        {
            vis[i]=1;
            dfs(i,tot+ss[pos][i],num+1);
            vis[i]=0;
        }
    return;
}
void solve()
{
    scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%lf%lf",&ma[i].x,&ma[i].y);
    ma[0].x=ma[0].y=0;
    for(int i=0;i<=n;i++)
        for(int j=i+1;j<=n;j++)
            {
                dou x1=ma[i].x,y1=ma[i].y,x2=ma[j].x,y2=ma[j].y;
                ss[j][i]=ss[i][j]=sqrt(abs((x1-x2)*(x1-x2))+abs((y1-y2)*(y1-y2)));
            }
    dfs(0,0,0);
    printf("%.2lf",ans);
}
int main()
{
    solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值