洛谷 2892 [USACO07OPEN] Fliptile 子集枚举+模拟

该博客详细解析了洛谷2892题目——USACO07OPEN的Fliptile问题。通过讨论开关问题,提出一个有效策略:当格子为1时翻转其下方的格子,避免无效翻转。博主采用子集枚举方法处理第一排的翻转情况,并通过扫描最后一排来得出结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目:
https://www.luogu.org/problem/show?pid=2892

开关问题,显然,一个格子翻两次是没用的,所以我们需要确定一个顺序,避免这种情况发生;

如果一个格子为1,那我们就翻转它下面的格子(不管这个格子是什么颜色);

子集枚举第一排那些需要翻(0,1都枚举),最后扫一遍最后一排就行了;

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
const int MAXN=101;
int ma[MAXN][MAXN],ss[MAXN][MAXN];
int a[MAXN],h[MAXN],ans[MAXN][MAXN],pi[MAXN][MAXN];
int cnt,flag,n,m,fx,fy,sum,tot=214748367;
int X[6]={0,1,0,-1,0};
int Y[6]={0,0,-1,0,1};
bool can(int x,int y)
{
    if(x>=1 && x<=n && y>=1 && y<=m) return true;
    return false;
}
bool calc(int cur)
{
    memset(ans,0,sizeof(ans));
    memset(ma,0,sizeof(ma));
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            ma[i][j]=ss[i][j];
    for(int i=1;i<cur;i++) ans[1][h[i]]=1,ma[1][h[i]]=!ma[1][h[i]];
    for(int i=1;i<cur;i++)
        if(ans[1][h[i]])
        {
            for(int j=1;j<=4;j++)
            {
                fx=1+X[j],fy=h[i]+Y[j];
                if(can(fx,fy)) 
                ma[fx][fy]=!ma[fx][fy];
            }    
        }
    for(int i=2;i<=n;i++)
        for(int j=1;j<=m;j++)
            if(ma[i-1][j])
                {
                    ans[i][j]=1;
                    ma[i][j]=!ma[i][j];
                    for(int v=1;v<=4;v++)
                    {
                        fx=i+X[v],fy=j+Y[v];
                        if(can(fx,fy))
                        ma[fx][fy]=!ma[fx][fy];
                    }
                }
    for(int j=1;j<=m;j++)
        if(ma[n][j]) return false;
    return true;
}
void dfs(int cur)
{
    if(calc(cur))
    {
        flag=1,sum=0;
        for(int i=1;i<=n;i++)
            for(int j=1;j<=m;j++)
                sum+=ans[i][j];
        if(sum<tot)
        {
            tot=sum;
            for(int i=1;i<=n;i++)
                for(int j=1;j<=m;j++)
                    pi[i][j]=ans[i][j];
        }
    }
    for(int i=h[cur-1]+1;i<=n;i++)
        h[cur]=i,dfs(cur+1);
    return;
} 
void solve()
{
    cin>>n>>m;
    for(int i=1;i<=n;i++)
        for(int j=1;j<=m;j++)
            scanf("%d",&ma[i][j]),ss[i][j]=ma[i][j];
    for(int i=1;i<=n;i++) a[i]=ma[1][i];
    dfs(1);
    if(flag)
    {
        for(int i=1;i<=n;i++) 
        {
            for(int j=1;j<=m;j++)
                cout<<pi[i][j]<<" ";
            cout<<endl;
        }
        return;
    }
    else cout<<"IMPOSSIBLE"<<endl;
    return;
}
int main()
{
    solve();
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值