考试11.6 T2 匈牙利 + 二分

本文介绍了一种结合二分查找与匈牙利算法解决匹配问题的方法,并通过一个具体的编程实例展示了如何实现这一算法组合。文章强调了变量命名的重要性及二分搜索边界条件的设定,对于理解并应用这两种算法于实际编程竞赛中具有一定的指导意义。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

这里写图片描述
这里写图片描述

出题人的语文不错啊~~~~

二分后跑匈牙利;

考试的时候打错了变量名全WA,竟然还过了样例!!!!

注意二分边界,因为是左闭右开区间,所以r需要加1;

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
using namespace std;

const int MAXN=400001;
int fst[MAXN],nxt[MAXN],cdis[MAXN];
struct hh {int from,to;}ma[MAXN];
bool vis[MAXN][31],used[MAXN];
int T,n,l,r,tot,cnt;
char ss[1001],s[1001][1001];

void build(int f,int t)
{
    ma[++tot]=(hh){f,t};
    nxt[tot]=fst[f],fst[f]=tot;
    return;
}


bool dfs(int x)
{
    for(int i=fst[x];i;i=nxt[i])
    {
        int v=ma[i].to;
        if(!used[v])
        {
            used[v]=1;
            if(!cdis[v] || dfs(cdis[v]))
            {
                cdis[v]=x;
                return true;
            }
        }
    }
    return false;
}

bool check(int x)
{
    memset(fst,0,sizeof(fst));
    memset(nxt,0,sizeof(nxt));
    memset(ma,0,sizeof(ma));
    memset(cdis,0,sizeof(cdis));
    memset(used,0,sizeof(used));
    tot=0,cnt=0;

    for(int j=1;j<=x;j++)
        for(int i=1;i<=n;i++)
            if(vis[i][ss[j]-'A'+1])
                build(j,i);

    for(int i=1;i<=x;i++)
    {
        memset(used,0,sizeof(used));
        if(dfs(i)) cnt++;
    }
    if(cnt==x) return true;
    else return false;
}


void solve()
{
    memset(vis,0,sizeof(vis));
    memset(ss,'\0',sizeof(ss));
    scanf("%d",&n);
    for(int i=1;i<=n;i++) scanf("%s",s[i]+1);
    scanf("%s",ss+1);

    for(int i=1;i<=n;i++)
    {
        int len=strlen(s[i]+1);
        for(int j=1;j<=len;j++)
            vis[i][s[i][j]-'A'+1]=1;
    }

    r=strlen(ss+1)+1,l=0;

    while(r - l > 1)
    {
        int mid=(l+r)>>1;
        if(check(mid)) l=mid;
        else r=mid;
    }
    cout<<l<<'\n';
}

int main()
{
    cin>>T;
    while(T--) solve();
    return 0;
}
内容概要:本文档详细介绍了基于事件触发扩展状态观测器(ESO)的布式非线性车辆队列控制系统的实现。该系统由N+1辆车组成(1个领头车和N个跟随车),每辆车具有非线性动力学模型,虑了空气阻力、滚动阻力等非线性因素及参数不确定性和外部扰动。通过事件触发ESO估计总扰动,基于动态面控制方法设计布式控制律,并引入事件触发机制以减少通信和计算负担。系统还包含仿真主循环、结果可视化等功能模块。该实现严格遵循论文所述方法,验证了观测误差有界性、间距误差收敛性等核心结论。 适合人群:具备一定编程基础,对非线性系统控制、事件触发机制、扩展状态观测器等有一定了解的研发人员和研究人员。 使用场景及目标:①研究布式非线性车辆队列控制系统的理论与实现;②理解事件触发机制如何减少通信和计算负担;③掌握扩展状态观测器在非线性系统中的应用;④学习动态面控制方法的设计与实现。 其他说明:本文档不仅提供了详细的代码实现,还对每个模块进行了深入解析,包括非线性建模优势、ESO核心优势、动态面控制与传统反步法对比、事件触发机制优化等方面。此外,文档还实现了论文中的稳定性析,通过数值仿真验证了论文的核心结论,确保了系统的稳定性和有效性。建议读者在学习过程中结合代码进行实践,并关注各个模块之间的联系与相互作用。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值