一、回溯算法
- 回溯问题,实际上就是一个决策树的遍历过程,需要思考以下问题:
- 路径:也就是已经做出的选择
- 选择列表:当前可以作出的选择
- 结束条件:到达决策树底层,无法再作出选择
- 代码框架
- 在做选择的时候,要特别注意选择从哪里开始,如果是全排列的问题,那么需要从头开始做选择
result = []
def backtrack(路径,选择列表):
if(满足结束条件):
result.add(路径)
return
for 选择 in 选择列表:
做选择
backtrack(路径,选择列表)
撤销选择
二、N皇后问题(八皇后)
public List<List<String>> solveNQueens(int n) {
List<List<String>> res = new ArrayList<>();
int[] board = new int[n];//使用board来记录皇后的位置,下标指行数,所存数字为列数
Arrays.fill(board, -1);
backtrack(res, board, 0);
return res;
}
public void backtrack(List<List<String>> res, int[] board, int row){//row行
if(row == board.length){
res.add(generateBoard(board, board.length));
return;
}
for (int col = 0; col < board.length; col++) {//col列
//在这里加这个判断,其实也是相当于剪枝了
//如果当前位置(row, col)有冲突,不能放置Q皇后,那么换到下一个位置(row, col+1)
if(!isValid(board, row, col)){
continue;
}
//如果当前位置(row, col)无冲突,那么尝试作出选择
board[row] = col;
backtrack(res, board, row+1);
board[row] = -1;//撤销选择
}
}
/**
* 判断当前位置是否冲突
* @param board
* @param row
* @param col
* @return
*/
public boolean isValid(int[] board, int row, int col){
int n = board.length;
// 检查列是否有皇后互相冲突
for (int i = 0; i < row; i++) {
if (board[i] == col)
return false;
}
// 检查右上方是否有皇后互相冲突
int temp = col;
for (int i = row-1; i >= 0; i--) {
if(board[i] == ++temp){
return false;
}
}
// 检查左上方是否有皇后互相冲突
temp = col;
for (int i = row-1; i >= 0; i--) {
if(board[i] == --temp){
return false;
}
}
return true;
}
/**
* 生成题目要求格式的答案
* @param queens
* @param n
* @return
*/
public List<String> generateBoard(int[] queens, int n) {
List<String> board = new ArrayList<String>();
for (int i = 0; i < n; i++) {
char[] row = new char[n];
Arrays.fill(row, '.');
row[queens[i]] = 'Q';
board.add(new String(row));
}
return board;
}
- 其实,可以这样认为,动态规划的暴力破解就是回溯算法,但是动态规划一般可以进行剪枝或者自底向上解决重叠子问题。如果解题时找不到动态规划的转换方程,那么可以使用回溯算法(可能会超时,毕竟是暴力破解)