复杂网络——活跃度驱动模型(activity-driven model)原理及算法实现

本文介绍了复杂网络中的活跃度驱动模型,该模型基于节点的活跃度来模拟网络动态演化。文章详细阐述了模型原理,研究方向如流行病传播,并提供了模型的伪代码思想和代码实现,适合于复杂网络和时序网络的研究者参考。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、活跃度驱动模型引入

学习复杂网络的学生对这个模型应该很熟悉了,这是一个近些年非常值得关注的网络模型,如果你正打算学习时序网络,那么你必须得看一下这篇论文 《Activity driven modeling of time varying networks》【1】。

这篇论文通过分析真实的数据集,发现人类在社交过程中个体的活跃性有很大差别,大多数个体活跃性较小,其参与活动次数少, 有些的个体却拥有较多的社交圈,后者数目较小。作者发现这些人类活跃性恰好服从一个异质的幂律分布。于是他们用异质的活跃度描述人类活跃程度,活跃度越小的个体在网络中不容易自主的产生连边,它们大多时候等待活跃度较大的节点激活产生连边然后连接到它们。在每时刻网络构建中活跃度较大的个体生成的节点度也越大,这样的特性最后导致节点的度也服从异质的幂律分布,因此该模型能够很好的再现真实网络度的异质特性。

&nb

评论 32
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

像素棱镜

你的鼓励将是我前进的动力。

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值