剑指offer Leetcode 29.顺时针打印矩阵

该博客详细介绍了如何实现矩阵的螺旋顺序遍历算法,包括算法思想、时间空间复杂度分析以及具体的C++代码实现。算法以O(mn)的时间复杂度和O(1)的空间复杂度完成矩阵的螺旋遍历,适用于处理二维矩阵数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

image-20201206215055823

解法:

思想:

image-20201206215318255

复杂度:

​ ●时间:O(mn)

​ ●空间:O(1)

代码:
class Solution {
public:
    vector<int> spiralOrder(vector<vector<int>>& matrix) {
        if(matrix.empty() || matrix[0].empty())
            return {};
        int m = matrix.size(), n = matrix[0].size();
        int l = 0, r = n - 1, t = 0, b = m - 1;
        vector<int>ans(m * n, 0);
        int cnt = 0;
        while(true){
            for(int i = l; i <= r; i++)
            //坐标很容易写错,要格外注意,是哪个坐标在变,哪边就是i
                ans[cnt++] = matrix[t][i];
            //图上看起来是++t与b重合,但是其实应该是判断大于
            if(++t > b)
                break;
            for(int i = t; i <= b; i++)
                ans[cnt++] = matrix[i][r];
            if(--r < l)
                break;
            for(int i = r; i >= l; i--)
                ans[cnt++] = matrix[b][i];
            if(--b < t)
                break;
            for(int i = b; i >= t; i--)
                ans[cnt++] = matrix[i][l];
            if(++l > r)
                break;
        }
        return ans;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值