ORBSLAM3三角化

本文详细介绍了ORBSLAM3中三角化的实现过程,包括反投影函数unproject和三角化函数Triangulate。反投影函数通过像素坐标得到相机坐标,三角化函数利用线性三角化法计算三维空间点的坐标。主要内容涵盖函数参数、计算原理及代码实现,最终在main函数中整合完成三角化操作。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

ORBSLAM3中的三角化

主要函数

在三角化中,ORBSLAM3直接使用前面已经完成了特征提取和特征匹配的结果,直接获取到特征点的像素坐标,由此,可以进行反投影从像素坐标得到相机坐标,再对相匹配的两个相机坐标进行三角化,所以这其中涉及到了两个主要函数,反投影函数unproject与三角化函数Triangulate
注:该函数定义在KannalaBrandt8相机模型文件中。

反投影函数unproject

参数

该函数中参数只有一个待反投影的像素坐标点,const cv::Point2f引用类型。

内容

根据图像物理坐标的转换公式倒推即可得到反投影的方法:
{ u=αX′+cxv=βY′+cy(1) \left\{\begin{matrix} u=\alpha X{}' +c_{x}\\ v=\beta Y{}'+c_{y} \end{matrix}\right.\tag{1} { u=αX+cxv=βY+cy(1)
其中(uv)\begin{pmatrix} u \\ v \end{pmatrix} (uv)是像素坐标,(X′Y′)\begin{pmatrix} X_{}' \\ Y_{}' \end{pmatrix} (XY)
是图像物理坐标。
另外,图像物理坐标与相机坐标的对应关系:
{ X′=fXZY′=fYZ(2) \left\{\begin{matrix} {} X{}'=f\frac{X}{Z}\\ Y{}'=f\frac{Y}{Z} \end{matrix}\right.\tag{2} { X=fZXY=fZY(2)
注:由于在对特征点进行提取匹配时进行了归一化处理,所以得到的相机坐标开始,都是进行了归一化处理后的值,即对归一化坐标左乘内参即可得到像素坐标
由(1)(2)可以推得反投影公式:
{ XZ=u−cxfxYZ=v−cyfy(3) \left\{\begin{matrix} {} \frac{X}{Z}=\frac{u-c_{x}}{f_{x}}\\ \frac{Y}{Z}=\frac{v-c_{y}}{f_{y}} \end{matrix}\right.\tag{3} { ZX=fxucxZY=fyvc

### ORB-SLAM3 中的三角化实现 ORB-SLAM3三角化过程主要涉及通过多视图几何原理来计算空间点的位置。该算法利用特征点在不同视角下的观测数据,构建三维地图点。 #### 特征点匹配与初始化 为了进行有效的三角化,在多个帧之间找到共同可见的特征点至关重要。这些特征点通常由 ORB 描述子提取并描述出来[^1]。一旦找到了足够的匹配对,则可以启动初始的地图创建流程: ```cpp // 假设已知两个相机位姿 Tcw0 和 Tcw1, 以及对应的图像坐标 u0, v0 和 u1, v1 cv::Mat P0 = K * cv::Mat(Tcw0).rowRange(0, 3); cv::Mat P1 = K * cv::Mat(Tcw1).rowRange(0, 3); std::vector<cv::Point2f> points2D_0; points2D_0.push_back(cv::Point2f(u0,v0)); std::vector<cv::Point2f> points2D_1; points2D_1.push_back(cv::Point2f(u1,v1)); std::vector<cv::Point3d> triangulatedPoints; cv::triangulatePoints(P0, P1, points2D_0, points2D_1, triangulatedPoints); ``` 这段代码展示了如何使用 OpenCV 库来进行基本的三角化操作。实际应用中,还需要考虑更多细节,比如异常值剔除、重投影误差最小化等[^2]。 #### 多视图优化 随着系统运行时间的增长,更多的关键帧会被加入到全局优化过程中。此时不仅依赖于两帧之间的关系,还会涉及到更复杂的因子图模型,其中包含了所有观察到的地图点及其关联的关键帧信息。这种大规模优化有助于提高整体定位精度和鲁棒性。 对于可能出现的问题及解决方案如下: - **共线或近似共面情况**:当场景内存在大量平行结构时可能导致解不稳定。可以通过增加额外约束条件或者引入先验知识加以改善。 - **光照变化影响特征匹配质量**:采用更加稳健的特征描述符(如 A-KAZE 或 SIFT),并在必要时候调整阈值参数以适应不同的环境光线状况。 - **动态物体干扰**:过滤掉快速移动的对象所引起的错误对应关系;也可以尝试结合语义分割技术排除非静态部分的影响。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值