Swift 实战:从数据流到不重叠区间的高效转换

在这里插入图片描述
在这里插入图片描述

摘要

在日常开发中,我们经常会遇到这样的需求:从一串不断到来的数据中,实时维护一组“合并好的区间”。比如,日志的连续时间段、用户连续签到天数、实时数据的连续区间等。
LeetCode 第 352 题 Data Stream as Disjoint Intervals 就是这种场景的典型抽象。它要求我们在数据流中动态添加数字,并随时返回当前数字集合的“不重叠有序区间”表示。

本文将用 Swift 从零实现一个高效的 SummaryRanges 类,逐步分析设计思路,并提供一个可直接运行的 Demo。

描述

题目要求我们实现这样一个类:

  1. SummaryRanges():初始化对象,数据流初始为空。
  2. addNum(val):添加一个数字到数据流中。
  3. getIntervals():返回当前数据流中所有数字的合并区间列表,且区间必须有序且不重叠。

例子

假设我们依次调用:

addNum(1) → getIntervals() → [[1, 1]]
addNum(3) → getIntervals() → [[1, 1], [3, 3]]
addNum(7) → getIntervals() → [[1, 1], [3, 3], [7, 7]]
addNum(2) → getIntervals() → [[1, 3], [7, 7]]
addNum(6) → getIntervals() → [[1, 3], [6, 7]]

你可以看到,数字进来后如果能与已有区间相连,就会被合并;否则,它会自己成为一个新区间。

题解答案

最直接的解法是:

  • 用一个 有序集合有序数组 存储所有出现过的数字;
  • 每次 getIntervals() 遍历这些数字,按连续性分组形成区间。

但是这样有两个问题:

  1. 每次获取区间都要 O(n) 遍历,调用频繁时性能差;
  2. 插入数字时需要保持有序,普通数组插入 O(n) 会慢。

更好的方法是:

  • 使用 有序字典(SortedDictionary)TreeMap 思路 存储每个区间;
  • addNum 时直接合并到现有区间,避免重复遍历;
  • 这样 getIntervals 可以直接 O(k) 返回区间列表(k 是区间数)。

Swift 没有内置 TreeMap,但可以用 SortedDictionary 的思路,或直接用普通字典 + 手动合并(配合有序 keys)。

题解代码分析

下面是 Swift 代码实现,并且是可运行的 Demo 模块。

import Foundation

class SummaryRanges {
    private var intervals: [(Int, Int)] = []
    
    init() {}
    
    func addNum(_ val: Int) {
        // 如果 intervals 为空,直接加
        if intervals.isEmpty {
            intervals.append((val, val))
            return
        }
        
        var newStart = val
        var newEnd = val
        var merged: [(Int, Int)] = []
        var inserted = false
        
        for (start, end) in intervals {
            if end + 1 < newStart {
                // 当前区间完全在新数左边
                merged.append((start, end))
            } else if newEnd + 1 < start {
                // 当前区间完全在新数右边
                if !inserted {
                    merged.append((newStart, newEnd))
                    inserted = true
                }
                merged.append((start, end))
            } else {
                // 有交集或相邻,合并区间
                newStart = min(newStart, start)
                newEnd = max(newEnd, end)
            }
        }
        
        if !inserted {
            merged.append((newStart, newEnd))
        }
        
        intervals = merged
    }
    
    func getIntervals() -> [[Int]] {
        return intervals.map { [$0.0, $0.1] }
    }
}

// Demo
let summaryRanges = SummaryRanges()
summaryRanges.addNum(1)
print(summaryRanges.getIntervals()) // [[1, 1]]
summaryRanges.addNum(3)
print(summaryRanges.getIntervals()) // [[1, 1], [3, 3]]
summaryRanges.addNum(7)
print(summaryRanges.getIntervals()) // [[1, 1], [3, 3], [7, 7]]
summaryRanges.addNum(2)
print(summaryRanges.getIntervals()) // [[1, 3], [7, 7]]
summaryRanges.addNum(6)
print(summaryRanges.getIntervals()) // [[1, 3], [6, 7]]

代码解析

  1. 数据结构选择
    用一个有序的 [(start, end)] 元组数组 intervals 存储区间,每次插入新数字时,按顺序扫描并决定合并还是插入。

  2. 插入逻辑

    • 如果新区间完全在某个区间左侧并且不相连,直接放进合并结果;
    • 如果完全在右侧并且不相连,先放入新数字区间再放现有区间;
    • 如果有交集或相邻,更新 newStartnewEnd 进行合并。
  3. 返回结果
    getIntervals() 直接 O(k) 遍历区间数组并转成二维数组返回。

示例测试及结果

运行上面的 Demo,会输出:

[[1, 1]]
[[1, 1], [3, 3]]
[[1, 1], [3, 3], [7, 7]]
[[1, 3], [7, 7]]
[[1, 3], [6, 7]]

这与题目中的预期完全一致。

时间复杂度

  • addNum:O(k),k 为区间数(最坏情况下 k≈n,但通常 k << n);
  • getIntervals:O(k);
  • 对于数据流比较稀疏的情况,性能非常好。

空间复杂度

  • 额外存储 intervals 数组,最多存储 n 个不相交区间,空间复杂度 O(n)。

总结

这道题虽然名字看起来很抽象,但在很多实际场景里都有用武之地,比如:

  • 实时统计用户的连续签到区间;
  • 日志中连续时间片段的合并;
  • 实时视频或音频帧缺失检测。

用 Swift 实现时,我们不需要复杂的平衡树结构,也能通过有序数组+一次扫描的方式做到高效插入和查询。在数据流中区间合并的问题,关键是保持区间有序性和及时合并,这样才能保证后续查询快速、结构清晰。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

网罗开发

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值