Halcon图像处理之图像增强(2)

本文介绍了数据增强在缺陷检测和尺寸测量项目中的实践经验,涉及滤波网络如高通、低通和高斯滤波,图像增强算法如Halcon库中的强调、乘法和对数变换,以及卷积网络和边沿检测方法如Sobel核和拉普拉斯核。此外,还讨论了快速傅里叶变换在图像处理中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一直想写一篇关于数据增强的文章,奈何做的项目比较少,导致部分内容存在纸上谈兵的嫌疑,刚好,最近一年在缺陷检测及尺寸测量上有了一定想项目经验,特此写下本篇博客,希望对各位博友有所帮助

1、滤波网络

    常用的滤波网络包括:高通滤波、低通滤波、中值滤波网络等,上述常用的网络其实在现实的应用场景中用的比较少,除了上述网络外还有高斯滤波,均值滤波等,这种网络有利于除去图像中的噪点,

高通滤波

 highpass_image (Image, Highpass, 9, 9)

对比如下:
原图
高通滤波

低通滤波

lowlands (Image, Lowlands)

低通滤波器

带通滤波

bandpass_image (Image, ImageBandpass, 'lines')

带通滤波

高斯滤波

gauss_filter (Image, ImageGauss, 5)

高斯滤波器

均值滤波

mean_image (Image, ImageMean, 9, 9)

中值滤波

2、图像增强

Halcon自带图像增强

Halcon自带的图像增强算法效果还是比较好的
emphasize (Image, ImageEmphasize, 7, 7, 2)

halcon自带增强算法

图像乘法

scale_image (Image, ImageScaled, 10, 0)

图像乘法

图像加法

add_image (Image, ImageEmphasize, ImageResult, 0.5, 0)

图像加法

对数变换

log_image (Image, LogImage, 'e')

对数变换

指数变换

exp_image (Image, ExpImage, 'e')

在这里插入图片描述

图像取反

invert_image (Image, ImageInvert)

![图像取反](https://img-blog.csdnimg.cn/7c7c9db31f01494db43d625bb1dd688c.png

3、卷积网络

传统算法中的卷积网络在边沿提取中往往能够得到比较好的效果,常用的卷积核也比较多,如高斯核以及Sobel核

Sobel核

sobel_amp (Image, EdgeAmplitude, 'sum_abs', 3)

Sobel边沿提取

sobel边沿提取

拉普拉斯核

拉普拉斯核常用在边沿提取上,一般为对称矩阵,能突出图像中的急剧灰度变化,抑制灰度缓慢变化区域,往往会产生暗色背景下的灰色边缘和不连续图像。将拉普拉斯图像与原图叠加,可以得到保留锐化效果的图像
laplace_of_gauss (Image, ImageLaplace, 2)

在这里插入图片描述
拉普拉斯滤波

卷积网络

所提卷积为传统算法中的一种滤波网络,与深度学习中的卷积网络有所不同,卷积核亦不同。当然其原理是相似的,都是一种滤波器。
sobelXright := [3,3,1,  \
               -1,0,1,  \
               -2,0,2,  \
               -1,0,1 ]
* 看kernel结构,我们可以推断出,将检测出图像中X方向由暗到亮的边缘
convol_image (Image, ImageResultxright, sobelXright, 'mirrored')

快速傅里叶变换

rft_generic (Image, ImageFFT, 'to_freq', 'sqrt', 'complex', 16)
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值