【图像超分】论文精读:Transformer for Single Image Super-Resolution(ESRT)

本文介绍了ESRT,一种用于单图像超分辨率的高效Transformer模型,它结合轻量级CNN主干和Transformer主干,降低了计算成本并减少了GPU内存占用。ESRT采用高保留块动态调整特征图大小,使用高频过滤模块和自适应残差特征块,同时结合了轻量级Transformer,利用高效多头注意力机制,有效地捕获了图像中相似区域的长期依赖性。实验证明,ESRT在保持竞争力的性能下,计算成本显著降低。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

第一次来请先看这篇文章:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)


前言

论文题目:Transformer for Single Image Super-Resolution —— 用于单幅图像超分辨率的变压器

论文地址:Transformer for Single Image Super-Resolution

论文代码:https://github.com/luissen/ESRT

CVPRW 2022!高效超分Transformer!

Abstract

随着深度学习的发展,单图像超分辨率 (SISR) 取得了长足的进步。然而,现有的研究大多集中在构建具有大量层的更复杂的网络。最近,越来越多的研究人员开始探索 Transformer 在计算机视觉任务中的应用。然而,视觉 Transformer 的计算成本高和

### Transformer Model for Single Image Super Resolution In the context of single image super-resolution (SISR), transformer models have emerged as powerful tools due to their ability to capture long-range dependencies and global contexts within images. A key contribution in this area involves a texture transformer that includes four tightly coupled modules specifically designed for SISR tasks[^2]. This architecture leverages multi-head self-attention mechanisms inherent in transformers, which allow each position in an input sequence to attend over all positions in previous layers. The core components of such a model typically include: #### Encoder Structure An encoder generates feature representations based on attention mechanisms, enabling these features to locate specific information from the entire context globally. For instance, given an input low-resolution image \( I_{LR} \): ```python class Encoder(nn.Module): def __init__(self, num_heads=8, d_model=512, dropout_rate=0.1): super(Encoder, self).__init__() self.self_attention = nn.MultiheadAttention(d_model, num_heads) self.feed_forward = FeedForwardNetwork() def forward(self, x): attn_output, _ = self.self_attention(x, x, x) output = self.feed_forward(attn_output) return output ``` This structure facilitates capturing detailed patterns across different regions of the image while maintaining spatial relationships between pixels. #### Decoder Architecture Decoders retrieve useful information from encoded high-level abstractions produced by encoders. In SISR applications, decoders reconstruct higher resolution versions of inputs using learned mappings derived during training phases. A notable aspect is how cross-scale feature integration modules enable stacking multiple instances of texture transformers, thereby enhancing representational power through deeper architectures without sacrificing performance or introducing excessive computational overheads. #### Attention Mechanism Transformers rely heavily on self-attention layers where every element interacts with others at once rather than sequentially like recurrent neural networks do. Such interactions help identify important parts contributing most significantly towards generating sharper details when upscaling lower quality visuals into finer ones. For example, consider applying positional encoding before feeding data points into subsequent processing stages; this step ensures relative distances among elements remain preserved throughout transformations applied inside network pipelines. ```python def get_positional_encoding(max_len, embed_size): pe = torch.zeros(max_len, embed_size) position = torch.arange(0., max_len).unsqueeze(1) div_term = torch.exp(torch.arange(0., embed_size, 2) * -(math.log(10000.) / embed_size)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) return pe.unsqueeze(0) positional_encodings = get_positional_encoding(image_height*width, embedding_dim) input_tensor += positional_encodings.to(device) ``` By integrating advanced techniques mentioned above along with traditional convolution operations commonly found in CNN-based approaches, modern transformer-driven solutions achieve superior results compared to earlier methods used exclusively for solving problems related to SISR.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值