【图像去噪】论文精读:Deformed2Self: Self-Supervised Denoising for Dynamic Medical Imaging(D2S)

请先看【专栏介绍文章】:【图像去噪(Image Denoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)


前言

论文题目:Deformed2Self: Self-Supervised Denoising for Dynamic Medical Imaging —— Deformed2Self:动态医学成像的自监督去噪

论文地址:Deformed2Self: Self-Supervised Denoising for Dynamic Medical Imaging

论文源码:https://github.com/daviddmc/Deform2Self

MICCAI 2021!

Abstract

图像去噪对于医学成像系统具有重要意义,因为它可以提高疾病诊断和下游图像分析的图像质量。在各种应用中,动态成像技术

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

十小大

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值