1. 案例分析:重构“策略”模式
如果合理利用作为一等对象的函数,某些设计模式可以简化,“策略”模式就是其中一个很好的例子。本节接下来的内容中将说明“策略”模式,并使用《设计模式:可复用面向对象软件的基础》一书中所述的“经典”结构实现它。
1.1 经典的“策略”模式
图中的 UML 类图指出了“策略”模式对类的编排。 《设计模式:可复用面向对象软件的基础》一书是这样概述“策略”模式的: 定义一系列算法,把它们一一封装起来,并且使它们可以相互替换。本模式使得算法可以独立于使用它的客户而变化。
电商领域有个功能明显可以使用“策略”模式,即根据客户的属性或订单中的商品计算折扣。假如一个网店制定了下述折扣规则:
有 1000 或以上积分的顾客,每个订单享 5% 折扣。 同一订单中,单个商品的数量达到 20 个或以上,享 10% 折扣。 订单中的不同商品达到 10 个或以上,享 7% 折扣。 简单起见,我们假定一个订单一次只能享用一个折扣。先简单描述下这个策略模式:
上下文(订单) 把一些计算委托给实现不同算法的可互换组件,它提供服务。在这个电商示例中,上下文是 Order,它会根据不同的算法计算促销折扣。 策略(促销策略) 实现不同算法的组件共同的接口。在这个示例中,名为Promotion 的抽象类扮演这个角色。 具体策略 “策略”的具体子类。fidelityPromo、BulkPromo 和LargeOrderPromo 是这里实现的三个具体策略。 策略实现代码如下:
from abc import ABC, abstractmethod
from collections import namedtuple
'''
经典策略模式实现
'''
Customer = namedtuple( "Customer" , "name fidelity" )
class LineItem :
def __init__ ( self, product, quantity, price) :
self. product = product
self. quantity = quantity
self. price = price
def total ( self) :
'''单个商品总金额'''
return self. price * self. quantity
class Order :
def __init__ ( self, customer, cart, promotion= None ) :
self. customer = customer
self. cart = cart
self. promotion = promotion
def total ( self) :
"""商品总金额"""
if not hasattr ( self, '__total' ) :
self. __total = sum ( item. total( ) for item in self. cart)
return self. __total
def due ( self) :
"""折扣后应付金额"""
discount = 0 if self. promotion is None else self. promotion. discount( self, self)
return self. total( ) - discount
def __repr__ ( self) :
'''格式化对象输出'''
fmt = '<Order total: {:.2f}> due: {:.2f}'
return fmt. format ( self. total( ) , self. due( ) )
class Promotion ( ABC) :
@abstractmethod
def discount ( self, order) :
"""返回折扣金额"""
class FidelityPromo ( Promotion) :
def discount ( self, order) :
"""为积分为1000或以上的顾客提供5%折扣"""
return order. total( ) * 0.05 if order. customer. fidelity >= 1000 else 0
class BulkItemPromo ( Promotion) :
def discount ( self, order) :
"""单个商品为20个或以上时提供10%折扣"""
return sum ( [ item. total( ) * 0.1 for item in order. cart if item. quantity >= 20 ] )
class LargeOrderPromo ( Promotion) :
def discount ( self, order) :
"""订单中的不同商品达到10个或以上时提供7%折扣"""
return order. total( ) * 0.07 if len ( [ item. product for item in order. cart] ) >= 10 else 0
注意:把 Promotion 定义为抽象基类
(AbstractBase Class,ABC),这么做是为了使用 @abstractmethod
装饰器,从而明确表明所用的模式。在due()
函数中调用discount
函数传入了两个self,这是因为策略类中的discount(self, order)
函数的self会把传入的self当做self使用,而传入的self其实就是指Order,为了避免这个问题,传入了两个self,第二个self赋值给discount的order参数,也就是discount(self=self, order=self)
,这里比较特殊,一般情况下这个self可以拿到自身对象是无需传入的。 测试案例如下:
if __name__ == '__main__' :
joe = Customer( 'John Doe' , 0 )
ann = Customer( 'Ann Smith' , 1100 )
cart = [
LineItem( 'banana' , 4 , 0.5 ) ,
LineItem( 'apple' , 10 , 1.5 ) ,
LineItem( 'watermelon' , 5 , 5.0 ) ,
]
banana_cart = [
LineItem( 'banana' , 30 , 0.5 ) ,
LineItem( 'apple' , 10 , 1.5 ) ,
]
Long_order = [ LineItem( str ( item) , 1 , 1.0 ) for item in range ( 10 ) ]
print ( Order( joe, cart, FidelityPromo) )
print ( Order( ann, cart, FidelityPromo) )
print ( Order( joe, banana_cart, BulkItemPromo) )
print ( Order( joe, Long_order, LargeOrderPromo) )
print ( Order( joe, cart, LargeOrderPromo) )
1.2 使用函数实现“策略”模式
在经典策略模式中,每个具体策略都是一个类,而且都只定义了一个方法,即 discount。此外,策略实例没有状态(没有实例属性)。你可能会说,它们看起来像是普通的函数——的确如此。既然这样可以使用函数来实现:
from collections import namedtuple
Customer = namedtuple( 'Customer' , 'name fidelity' )
class LineItem :
def __init__ ( self, product, quantity, price) :
self. product = product
self. quantity = quantity
self. price = price
def total ( self) :
return self. price * self. quantity
class Order :
def __init__ ( self, customer, cart, promotion= None ) :
self. customer = customer
self. cart = cart
self. promotion = promotion
def total ( self) :
if not hasattr ( self, '__total' ) :
self. __total = sum ( item. total( ) for item in self. cart)
return self. __total
def due ( self) :
discount = 0 if self. promotion is None else self. promotion( self)
return self. total( ) - discount
def __repr__ ( self) :
fmt = '<Order total: {:.2f}> due: {:.2f}'
return fmt. format ( self. total( ) , self. due( ) )
def fidelity_promo ( order) :
"""为积分为1000或以上的顾客提供5%折扣"""
return order. total( ) * 0.05 if order. customer. fidelity >= 1000 else 0
def bulk_item_promo ( order) :
"""单个商品为20个或以上时提供10%折扣"""
return sum ( [ item. total( ) * 0.1 for item in order. cart if item. quantity >= 20 ] )
def large_order_promo ( order) :
"""订单中的不同商品达到10个或以上时提供7%折扣"""
return order. total( ) * 0.07 if len ( [ item. product for item in order. cart] ) >= 10 else 0
使用函数计算折扣只需调用 self.promotion()
函数,而且省去了抽象基类,各个策略都是函数。新的程序代码量更少而且容易阅读。再次测试一下:
if __name__ == '__main__' :
if __name__ == '__main__' :
joe = Customer( 'John Doe' , 0 )
ann = Customer( 'Ann Smith' , 1100 )
cart = [
LineItem( 'banana' , 4 , 0.5 ) ,
LineItem( 'apple' , 10 , 1.5 ) ,
LineItem( 'watermelon' , 5 , 5.0 ) ,
]
banana_cart = [
LineItem( 'banana' , 30 , 0.5 ) ,
LineItem( 'apple' , 10 , 1.5 ) ,
]
Long_order = [ LineItem( str ( item) , 1 , 1.0 ) for item in range ( 10 ) ]
print ( Order( joe, cart, fidelity_promo) )
print ( Order( ann, cart, fidelity_promo) )
print ( Order( joe, banana_cart, bulk_item_promo) )
print ( Order( joe, Long_order, large_order_promo) )
print ( Order( joe, cart, large_order_promo) )
为了把折扣策略应用到 Order 实例上,只需把促销函数作为参数传入即可。 至此,我们使用函数实现了“策略”模式,由此也出现了其他可能性。假设我们想创建一个“元策略”,让它为指定的订单选择最佳折扣。接下来的几节会接着重构,利用函数和模块是对象,使用不同的方式实现这个需求。
1.3 选择最佳策略:简单的方式
继续使用函数策略,在此基础上使用元策略
,也就是定义一个函数,让函数根据订单自动选择最佳折扣。实现起来也很简单:
def best_promo ( order) :
"""选择最佳折扣"""
promos = [ fidelity_promo, bulk_item_promo, large_order_promo]
return max ( promo( order) for promo in promos)
print ( Order( joe, Long_order, best_promo) )
print ( Order( joe, banana_cart, best_promo) )
print ( Order( ann, cart, best_promo) )
该元策略解决了策略的选择问题,而且易于阅读。但是还存在一定的缺陷:若想添加新的促销策略,要定义相应的函数,还要记得把它添加到 promos 列表中;否则,当新促销函数显式地作为参数传给Order 时,它是可用的,但是 best_promo 不会考虑它。接下来探讨下该缺陷的解决方案。
1.4 找出模块中的全部策略
在 Python 中,模块也是一等对象,而且标准库提供了几个处理模块的函数。Python 文档是这样说明内置函数 globals
的。 globals()
返回一个字典,表示当前的全局符号表。这个符号表始终针对当前模块(对函数或方法来说,是指定义它们的模块,而不是调用它们的模块)。有了globals,就可以帮助best_promo 自动找到其他可用的*_promo 函数,不过过程有点曲折:
'''
迭代 globals() 返回字典中的各个key:value, 只选择key中以 _promo 结尾的名称,
并且过滤掉元策略 best_promo 防止无限递归。
'''
promos = [ v for k, v in globals ( ) . items( ) if k. endswith( "_promo" ) and k != 'best_promo' ]
def best_promo ( order) :
"""选择最佳折扣"""
return max ( promo( order) for promo in promos)
收集所有可用促销的另一种方法是,在一个单独的模块中保存所有策略函数,把 best_promo 排除在外。
import inspect
import promotions
'''
inspect.getmembers 函数用于获取对象(这里是 promotions 模块)的属性,第二个参数是可选的判断条件(一个布尔值函数)。
我们使用的是 inspect.isfunction,只获取模块中的函数。
'''
promos = [ func for name, func in inspect. getmembers( promotions, inspect. isfunction) ]
def fidelity_promo ( order) :
"""为积分为1000或以上的顾客提供5%折扣"""
return order. total( ) * 0.05 if order. customer. fidelity >= 1000 else 0
def bulk_item_promo ( order) :
"""单个商品为20个或以上时提供10%折扣"""
return sum ( [ item. total( ) * 0.1 for item in order. cart if item. quantity >= 20 ] )
def large_order_promo ( order) :
"""订单中的不同商品达到10个或以上时提供7%折扣"""
return order. total( ) * 0.07 if len ( [ item. product for item in order. cart] ) >= 10 else 0
该例展示了很好的可扩展性。唯一值得注意的是:promotions 模块只能包含计算订单折扣的函数。如果有人在 promotions 模块中使用不同的签名定义函数,那么 best_promo 函数尝试将其应用到订单上时会出错。我们可以添加更为严格的测试,审查传给实例的参数,进一步过滤函数。 动态收集促销折扣函数更为显式的一种方案是使用简单的装饰器,这里我会放在下一篇博客中详细介绍装饰器时讲解。下一节讨论“命令”
模式。这个设计模式也常使用单方法类实现,同样也可以换成普通的函数。
2. “命令”模式
“命令”设计模式也可以通过把函数作为参数传递而简化。这一模式对类的编排如图所示。 对PasteCommand 来说,接收者是 Document。对 OpenCommand来说,接收者是应用程序 “命令”模式的目的是解耦调用操作的对象(调用者)和提供实现的对象(接收者)
。在《设计模式:可复用面向对象软件的基础》所举的示例中,调用者是图形应用程序中的菜单项,而接收者是被编辑的文档或应用程序自身。这个模式的做法是,在二者之间放一个 Command 对象,让它实现只有一个方法(execute)的接口,调用接收者中的方法执行所需的操作。这样,调用者无需了解接收者的接口,而且不同的接收者可以适应不同的 Command 子类。调用者有一个具体的命令,通过调用 execute 方法执行。MacroCommand 可能保存一系列命令,它的 execute() 方法会在各个命令上调用相同的方法。 我们可以不为调用者提供一个 Command 实例,而是给它一个函数。此时,调用者不用调用 command.execute(),直接调用 command()即可。MacroCommand 可以实现成定义了 __call__
方法的类。这样,MacroCommand 的实例就是可调用对象,各自维护着一个函数列表,供以后调用。如下示例:
class MacroCommand :
"""一个执行一组命令的命令"""
def __init__ ( self, commands) :
self. commands = list ( commands)
def __call__ ( self, * args, ** kwargs) :
for cmd in self. commands:
cmd( )
复杂的“命令”模式(如支持撤销操作)可能需要更多,而不仅是简单的回调函数。即便如此,也可以考虑使用 Python 提供的几个替代品。 使用一等函数对“命令”模式的重新审视到此结束。站在一定高度上看,这里采用的方式与“策略”模式所用的类似:把实现单方法接口的类的实例替换成可调用对象
。毕竟,每 Python可调用对象都实现了单方法接口,这个方法就是 __call__
。
小结
很多情况下,在 Python 中使用函数或可调用对象实现回调更自然。本章对“策略”模式的重构和对“命令”模式的讨论是为了通过示例说明一个更为常见的做法:有时,设计模式或 API 要求组件实现单方法接口,而那个方法的名称很宽泛,例如“execute”“run”或“doIt”。在 Python 中,这些模式或 API 通常可以使用一等函数或其他可调用的对象实现,从而减少样板代码。