再看自适应RAG方法:SEAKR|PIKE-RAG|DeepRAG

当大语言模型开始"怀疑人生":一场关于知识检索的AI内心戏

各位看官,今天我们要聊一个AI界的"哲学难题"——当大语言模型突然意识到自己可能是个"半瓶子醋",会发生什么奇妙反应?

想象一下这个场景:某天深夜,ChatGPT正对着用户提问"如何造火箭"陷入沉思。它的大脑(参数)里明明只有《星际穿越》的剧情和马斯克的推特碎片,却突然涌起一股莫名的自信:“这个问题简单!燃料箱+推进器+点火=送人类上火星!”

——这就是AI圈著名的"幻觉发作"现场。

传统解决方案就像给AI配了个随身图书管理员(RAG系统),每次提问都往它手里塞百科全书。但很快人们发现:

  • 问"今天天气"时AI抱着《气象学概论》瑟瑟发抖
  • 问"1+1等于几"时AI在《高等数学》里溺水挣扎
  • 最惨的是问"晚饭吃什么",AI居然掏出了《分子料理指南》和《有机化学手册》

这时候,三位"AI心理医生"带着创新方案闪亮登场:

  1. SEAKR:给AI装了个"自我怀疑探测器",当模型内心OS"这题我虚…"时自动触发知识检索
  2. PIKE-RAG:像室内设计师一样,先搞清用户到底想要宜家简约风还是巴洛克奢华风
  3. DeepRAG:变身外卖骑手,知道抄近路送"常识快餐",绕远路取"专业知识外卖"

下面请欣赏AI界的《楚门的世界》——当大语言模型开始怀疑自己的记忆,它们会如何在这个充满知识迷雾的世界里寻找真相?且看正文分解…

(突然被AI助理打断:“主人您这段开场白…确定不会让读者觉得我们编辑部集体嗑药了吗?”)

释放LLM的自我意识:SEAKR如何通过自适应知识检索提升问答性能

随着大语言模型(LLM)的普及,一个关键缺陷逐渐暴露:幻觉问题——模型生成的内容听起来合理,实则与事实不符。这一问题在模型内部知识不足时尤为严重,导致模型即使信心满满,输出结果仍是错误的。

传统检索增强生成(RAG)方法试图通过为每个查询集成外部知识来缓解这一问题。然而,这种方法效率低下,甚至可能适得其反,尤其是当检索到的知识充满噪音或无关时

None

图1:自适应RAG主要关注1)何时检索,以及2)如何整合检索到的知识。来源:SEAKR

本文介绍了一项名为“SEAKR”的新研究。该研究提出了一个创新概念:利用模型对不确定性的自我感知,动态决定何时以及如何检索和整合外部知识,从而在效率和准确性之间实现最优平衡,如图1所示。

解决方案

概述

在这里插入图片描述

图2:SEAKR的整体框架。来源:SEAKR

与现有自适应RAG方法不同(后者仅依赖模型输出来判断是否需要检索),SEAKR利用了模型的自我感知不确定性——这一指标直接提取自LLM的内部状态。这使得SEAKR能更准确地评估模型是否具备足够知识来回答问题,或是否需要外部信息支持。

SEAKR基于三大核心组件构建:

  • 一个检索并排序相关知识片段的搜索引擎
  • 一个处理输入上下文并生成续写的LLM
  • 一个量化LLM输出置信度的自我感知不确定性估计器

SEAKR采用迭代的思维链(CoT)推理策略,根据LLM的内部不确定性动态决定是否检索外部知识。若需检索,SEAKR会对知识重新排序,选择最相关的片段,并将其与生成的推理过程整合,最终输出答案。在此过程中,SEAKR持续评估LLM的不确定性,确保生成内容既准确又可靠。

自我感知检索

SEAKR的自我感知检索流程包含三个关键步骤:组织输入上下文、生成查询、生成推理过程。

1. 输入上下文组织</

### 部署 Pike-RAG 大模型的本地环境 对于希望在本地环境中部署 Pike-RAG 大模型的企业和个人开发者而言,可以借鉴 Deep Searcher 提供的一键部署脚本和支持材料[^2]。尽管这些资料并非专门为 Pike-RAG 设计,但其通用性的指导原则仍然适用。 #### 准备工作 为了顺利安装和运行 Pike-RAG,在开始之前需确认满足以下条件: - 安装 Docker 或 Kubernetes 环境以执行容器化应用; - 至少拥有8GB RAM以及足够的磁盘空间来存储模型文件及相关依赖库; - 已获取最新版本的 Pike-RAG 模型权重和其他必要组件; #### 使用一键部署工具简化流程 采用类似于 Deep Searcher 所提供的自动化部署方案能够极大程度上减少手动配置的工作量。具体来说,可以通过如下命令启动基于 Docker Compose 的本地实例: ```bash git clone https://github.com/your-repo/pike-rag.git cd pike-rag/deploy/docker-compose/ docker-compose up -d --build ``` 如果倾向于使用更复杂的生产级编排,则可以选择 Kubernetes 方案: ```yaml apiVersion: apps/v1 kind: Deployment metadata: name: pike-rag-deployment spec: replicas: 3 selector: matchLabels: app: pike-rag template: metadata: labels: app: pike-rag spec: containers: - name: pike-rag-container image: your-dockerhub-user/pike-rag:latest ports: - containerPort: 8080 --- apiVersion: v1 kind: Service metadata: name: pike-rag-service spec: type: LoadBalancer selector: app: pike-rag ports: - protocol: TCP port: 80 targetPort: 8080 ``` 上述 YAML 文件定义了一个简单的 K8s 应用程序描述符,用于创建三个副本的服务并公开端口访问接口。 #### 后续操作建议 成功部署之后,应当进一步探索官方文档中关于参数调整、性能优化等方面的说明,以便更好地适应特定应用场景的需求。
评论 38
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

AI仙人掌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值