
AI Agent
文章平均质量分 96
优化后文本:
生成式人工智能代理位于人工智能技术的前沿领域,正在深刻变革我们与人工智能技术交互及应用的方式。本代码库https://github.com/xrzlizheng/GenAI_Agents旨在引导用户从基础代理实现逐步深入至尖端系统开发,助力其完成整个开发历程。
AI仙人掌
NLP算法专家|深耕智能文本处理领域,专注用AI技术驱动金融与政务场景的数字化转型
技术核心能力
领域专长
• 金融政务场景:10年+垂直领域经验,聚焦智能风控、政务文档解析、高精度信息抽取
• 文本智能处理:构建金融合同解析、监管文件结构化、政务问答系统等20+行业解决方案
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
从零开始,用 MCP 打造真正“会思考”的 RAG 智能体 —— 实战指南 + 源码解析
本文介绍了一种基于Model Context Protocol(MCP)构建的Agentic RAG系统,通过让LLM自主决定检索时机、内容和来源,实现私有知识和实时联网的双引擎协同。相比传统RAG固定查询单一知识库的模式,该系统能动态选择内部文档或实时网页,通过MCP协议实现工具的安全调用和数据访问。架构包含MCP服务器(智能体)、客户端及双向通信机制,支持向量数据库搜索和网页搜索两种工具。文章详细阐述了系统搭建步骤,包括环境配置、MCP服务器部署和RAG管道构建,最终实现能处理复杂查询的智能应用。原创 2025-07-23 13:04:07 · 871 阅读 · 1 评论 -
LangChain发布的智能体6步构建指南
智能体的能力不是“训练”出来的,而是靠“测试和人类反馈”一步步打磨出来的原创 2025-07-14 09:14:56 · 756 阅读 · 0 评论 -
从零实现一个基于 mem0的具有长期记忆的Text2SQL代理
智能查询助手通过实现跨用户会话的长期记忆功能,改变了传统的文本转SQL体验。受Mem0架构启发,此实现专门专注于数据库查询交互,并保持完整的用户隔离,提供个性化、安全的体验。原创 2025-07-14 09:09:37 · 893 阅读 · 0 评论 -
LLM智能体指南:如何使用LangGraph和CrewAI自动化处理复杂任务
详细介绍了两个主要开源框架:LangGraph提供基于图的工作流控制,CrewAI支持多智能体角色协作。通过构建电子邮件日程自动化项目,演示了从环境搭建到代码实现的完整流程。智能体可以扫描邮件、提取会议和任务、生成清晰的日程安排。多智能体协作通过专业分工(提取器、优先级排序器、格式化器)提高效率。文章还讨论了安全隐私考虑、故障排除技巧和未来发展趋势,包括更智能的记忆系统、多模态处理和边缘部署。这些工具使开发者能够构建真正智能的自动化助手。原创 2025-06-17 14:46:18 · 885 阅读 · 17 评论 -
AI智能体的智能记忆系统:Agentic Memory
详细介绍了三种记忆类型:短期记忆(工作记忆)用于维持当前对话上下文;长期记忆包括程序性记忆(行为模式)、情景记忆(具体经历)和语义记忆(事实知识)。通过LangGraph框架,展示了如何在生产环境中实现记忆管理,包括检查点机制、数据库集成和语义搜索。核心案例是构建一个具备完整记忆功能的电子邮件智能体,演示了如何将三种记忆类型有机结合。该智能体能够学习用户偏好、记住项目上下文、优化处理策略,并基于反馈自我改进。这标志着从无状态工具向真正智能的有状态智能体的关键转变。原创 2025-06-17 12:49:56 · 1163 阅读 · 40 评论 -
Paper2Poster-PosterAgent:在几分钟内将您的研究论文变成海报
如何从科学论文自动生成学术海报。学术海报在科学交流中起着重要作用,需要在短时间内向与会者传达论文的核心发现。然而,现有的自动化幻灯片生成系统在海报生成方面仍存在显著挑战。原创 2025-06-15 09:41:37 · 879 阅读 · 9 评论 -
复习embedding编码范式及理解代理Agentic RAG及传统RAG的区别
本文介绍了三种句子嵌入编码范式(Bi-encoders、Cross-encoders、ColBERT)及其在NLP系统中的应用,重点对比了它们的交互能力与计算效率差异。传统RAG系统通过线性流程增强LLM生成能力,而智能体RAG(Agentic RAG)引入AI代理机制,通过动态规划、多工具协作实现更智能的检索-生成流程。代码示例展示了如何用LangChain构建代理RAG系统,其核心优势在于意图理解、策略规划和多步信息整合能力,显著提升了复杂查询的处理效果。两种RAG架构的区别类原创 2025-06-13 20:30:00 · 1594 阅读 · 5 评论 -
AI Agents系列之构建多智能体系统
本文介绍了智能体的核心组件(模型、工具、指令)及设计原则,重点探讨如何选择适合不同任务的模型、设计工具集及编写清晰指令。文章提出三种工具类型(基础、检索、执行)和四种编排模式(管理器、监督者、去中心化、群体),并以监督者模式为例展示多智能体协同的实现方法。关键建议包括优先自动化复杂决策/非结构化数据场景,通过原型测试确定最优模型,以及保持工具的模块化和可组合性。原创 2025-06-10 08:16:17 · 1025 阅读 · 0 评论 -
使用LangGraph和LangSmith构建多智能体人工智能系统
本文介绍了构建多智能体AI系统的关键步骤,重点探讨了如何通过LangGraph和LangSmith工具创建具备短期记忆和长期记忆能力的智能客服系统。文章首先讲解了环境设置、LangSmith的调试监控作用,以及使用Chinook音乐数据库作为测试数据集的方法。随后,作者详细阐述了智能体的记忆机制设计,对比了短期对话记忆(MemorySaver)和长期用户偏好记忆(InMemoryStore)的差异,为构建可进行上下文感知交互的多智能体系统奠定了基础。所有实现代码和理论说明均以Jupyter Notebook原创 2025-06-09 19:40:50 · 1332 阅读 · 1 评论 -
如何打造一款金融推理工具Financial Reasoning Workflow:WebUI+Ollama+Fin-R1+MCP/RAG
本文探讨了结合金融专用大语言模型(Fin-R1)与金融工具链的金融推理解决方案。通过测试多个主流大模型对5年期10万加元贷款的计算结果,发现不同模型的准确性存在差异,其中Fin-R1和Phi4模型表现较好。文章介绍了在本地部署该方案的技术栈,包括Ollama、OpenWebUI、LightRAG等组件,并展示了Fin-R1在财务报告分析中的应用实例。该方案通过整合专业金融模型、计算工具和知识库,旨在提高金融推理任务的准确性和可靠性。原创 2025-06-07 00:15:00 · 1941 阅读 · 6 评论 -
基于智能代理人工智能(Agentic AI)对冲基金模拟系统:模范巴菲特、凯西·伍德的投资策略
一个由AI驱动的对冲基金模拟系统,能够通过模仿顶尖投资者的投资风格来生成交易信号。系统包含两种类型的人工智能体:(1) 个性化风格智能体(如巴菲特、凯西·伍德等7种投资风格)和(2) 技术任务智能体(包括估值、情绪、基本面等6项专项分析)。用户输入股票代码后,系统会调用Financial Datasets API获取真实财务数据,通过大语言模型(支持OpenAI、Google、Grok等供应商)进行分析,最终输出包含交易信号(买入/卖出、数量和置信度的决策报告。项目测试显示,不同风格智能体对同一股票可能给出原创 2025-06-06 02:15:00 · 1931 阅读 · 4 评论 -
智能路由革命:AI 生态系统的智能高速交警
研究表明,多数企业AI系统运行效率仅15%-20%,主要因查询路由不当导致成本浪费和响应延迟。智能路由技术通过分析查询意图,将其导向最适合的专业智能体,可带来三大优势:1)成本效益(轻量级模型处理简单任务);2)响应优化(最快智能体优先);3)专业匹配(领域专家处理对应问题)。实际应用案例显示,该技术使金融公司吞吐量提升10倍。系统通过并行处理、条件工作流和工具集成,可将响应时间从12秒缩短至4秒,同时支持动态智能体发现,实现AI系统的自我优化。原创 2025-05-30 13:23:07 · 1209 阅读 · 4 评论 -
用 Google ADK、MCP、RAG 和 Ollama 打造强大智能代理 AI
本文详细介绍了如何利用 Google ADK、MCP、RAG 和 Ollama 构建强大的多智能体聊天机器人。文章从 Google ADK 的开源背景讲起,阐述了其在简化智能代理开发过程中的关键作用,包括模型与部署的不可知性、强大的互操作性以及丰富的开发者工具。接着,通过具体的代码示例,展示了如何整合 YouTube 搜索、RAG 知识库以及智能文本处理,实现从视频资源检索到知识综合分析的全流程自动化。最终,通过一个智能代理的创建,将这些技术融合在一起,为开发者提供了一个高效、灵活且易于扩展的 AI 开发框原创 2025-05-28 19:30:00 · 521 阅读 · 5 评论 -
基于A2A、ADK和MCP打造多代理AI应用:深度解析与实战代码
### **摘要**本文深入探讨了如何利用谷歌的Agent-2-Agent(A2A)协议、Agent Development Kit(ADK)以及Model Control Protocol(MCP)构建多代理AI应用。文章首先回顾了MCP和ADK的核心概念,随后详细介绍了A2A协议的特点,包括基于任务的通信、代理发现、框架不可知的互操作性等。通过一个旅行规划系统的实战案例,展示了如何使用A2A协议实现航班搜索、酒店搜索和行程规划等多个代理之间的协作。文中不仅提供了详细的代码实现原创 2025-05-28 07:59:12 · 806 阅读 · 0 评论 -
用 ADK 和 MCP 打造智能代理,拯救世界从这里开始
本文介绍了如何使用 Google 的 Agent 开发工具包(ADK)和模型上下文协议(MCP)构建智能 AI 代理,并整合 Gemini 大型语言模型作为 MCP 客户端。详细讲解了从环境搭建到代码实现的全过程,包括代理类型(LLM代理、工作流代理、自定义代理)、工具集成方式及 MCP 服务器连接方法。文章提供完整技术教程,适合 AI 代理开发者学习,源码可在 GitHub 获取。通过 ADK + MCP + Gemini 的组合,开发者能构建具备动态任务执行和外部交互能力的 AI 代理系统。原创 2025-05-27 19:25:48 · 1199 阅读 · 0 评论 -
打造AI智能旅行规划器:基于LLM和Crew AI的Agent实践
如何利用代理型人工智能(Agentic AI)技术构建一个智能旅行规划器。通过结合Google Gemini LLM的强大语言处理能力和Crew AI的多代理协作框架,该系统能够自动完成旅行规划的复杂任务,包括实时航班搜索、酒店推荐以及行程生成。系统通过多个专门的AI代理协同工作,提供个性化的旅行建议,显著提升了用户体验。文章还详细介绍了系统的实现步骤、技术细节以及如何通过Streamlit构建用户友好的前端界面,展示了AI在旅行规划领域的强大潜力和应用前景。原创 2025-05-27 15:18:31 · 1416 阅读 · 7 评论 -
通过高效记忆算法将LLM API成本降低 40%:让LLM 只记住重要的事情
本文利用高效记忆算法,可将LLM聊天机器人的API调用成本降低40%。该方案通过智能区分用户输入中的"陈述"和"问题",仅对问题生成完整响应,从而减少不必要的标记使用。在营销活动策划场景的测试中,随着对话轮次增加,相比传统方法(所有对话历史均传递),新算法显著减少了总标记数量。关键技术包括:陈述内容提取关键事实、记忆存储的动态更新机制(添加/更新/无操作),以及基于语义相似度的检索系统。实验结果显示,在创建儿童故事原创 2025-05-25 09:30:10 · 1077 阅读 · 0 评论 -
Mem0:构建具备可扩展长期记忆的生产级 AI 代理
Mem0 成功模仿人类记忆机制,赋予大语言模型长期可靠的记忆能力,使模型不仅能 “记住” 信息,还能 “理解” 记忆中实体关系,在长时间对话中保持回答一致性与准确性,为实现更智能的人机交互提供了新途径原创 2025-05-25 09:07:53 · 1426 阅读 · 2 评论 -
ReAct 与 CoAct:AI 代理的推理与行动之旅
ReAct 和 CoAct 是两种将推理与行动结合的 AI 代理框架,旨在提升自主系统的能力。ReAct 通过让单一代理交替进行推理和行动,结合内部思维链与外部环境互动,显著提升了复杂任务的解决能力。它通过提示机制实现,适用于知识密集型任务和决策制定,增强了代理的透明度和适应性。然而,随着任务复杂性和长度的增加,ReAct 在记忆和规划深度方面面临挑战。CoAct 则通过引入多个代理的协作层级结构,将任务分解为全局规划和本地执行,提升了处理长周期任务的效率和鲁棒性。全局规划器负责高层次战略,本地执行器专注于原创 2025-05-23 21:18:04 · 1218 阅读 · 5 评论 -
用 GRPO 魔法点亮Text2SQL 的推理之路:让模型“思考”得更像人类
本文探讨了如何通过 GRPO(引导式奖励策略优化)技术,将一个标准的 7B 参数语言模型(Qwen2.5-Coder-7B-Instruct)细调为能够进行结构化推理的文本到 SQL 模型。通过设计多部分奖励函数,模型在推理质量和 SQL 准确性方面得到了显著提升。实验结果表明,经过 300 个样本和 250 步训练后,模型在 SQL 正确性、推理质量、格式遵循和教育价值等方面表现出色,88% 的输出得分在 4.0 或更高,展现出一致性和可解释性。原创 2025-05-06 13:05:00 · 1642 阅读 · 10 评论 -
开源AI代理框架大比拼:技术细节与开发者体验全解析
本文对当前热门的开源代理框架进行了全面对比,涵盖了从模型不可知性、数据传递方式到多模态支持、多代理协作等多个关键维度。这些框架包括 Agno、LangGraph、SmolAgents、Mastra、Pydantic AI、Atomic Agents、Autogen、CrewAI 和 Dify。通过详细分析每个框架的技术特点、开发者体验以及适用场景,本文帮助读者快速了解各框架的优势与局限,为选择合适的框架提供参考依据。无论是初学者还是资深开发者,都能从中找到适合自己的工具原创 2025-04-28 00:30:00 · 1255 阅读 · 10 评论 -
AI Agents系列:如何使用 ADK + MCP + Gemini AI 构建这个多代理系统
入探讨了如何利用谷歌的 A2A(Agent-to-Agent)协议、ADK(Agent Development Kit)、LangChain 和 MCP(Model Context Protocol)构建一个功能完善的多代理系统,以实现旅行行程的智能规划。系统通过 Streamlit UI 接收用户查询,由行程规划器解析关键信息后,分别调用航班搜索代理和酒店搜索代理获取航班与酒店信息。这两个代理通过 MCP 服务器与外部数据源交互,返回结果后,行程规划器整合所有数据生成完整行程原创 2025-04-22 08:56:19 · 1414 阅读 · 14 评论 -
实操基于MCP驱动的 Agentic RAG:智能调度向量召回或者网络检索
我们展示了一个由 MCP 驱动的 Agentic RAG,它会搜索向量数据库,当然如果有需要他会自行进行网络搜索。原创 2025-04-20 17:06:14 · 2176 阅读 · 53 评论 -
AI Agents系列之构建多智能体系统
本文深入探讨了多智能体系统的设计与实现,重点介绍了多种架构模式,包括并行、顺序、循环、路由器、聚合器、网络、监督者和层级架构。每种架构都通过具体示例展示了其在实际应用中的优势与适用场景。文章还详细讨论了智能体之间的通信机制,如图状态共享、消息列表和工具调用,以及如何通过这些机制实现智能体间的高效协作。通过这些架构和通信方式,多智能体系统能够有效解决复杂任务,提升系统的可扩展性和适应性。原创 2025-04-19 00:00:00 · 1855 阅读 · 33 评论 -
从零开始构建 Ollama + MCP 服务器
本文详细介绍了如何将 Ollama 中的小型语言模型与本地 MCP 服务器进行集成。通过创建一个简单的 MCP 服务器并暴露工具,再利用客户端连接服务器获取工具定义并转换为 Pydantic 模型,最终将这些模型传递给 Ollama。Ollama 根据定义生成结构化响应,客户端通过后台线程和队列调用服务器工具。文章通过代码示例和详细步骤,展示了整个集成过程,并成功实现了从用户请求到工具调用再到获取结果的完整流程。原创 2025-04-16 21:21:35 · 2155 阅读 · 21 评论 -
AI Agents系列之AI代理架构体系
本文深入探讨了AI智能体架构的多种类型及其应用场景。从简单的反应式架构到复杂的认知架构,每种架构都有其独特的优势和局限性。文章还介绍了LangGraph中的智能体设计模式,包括多智能体系统、规划智能体以及反思与批评机制。这些设计模式为解决复杂任务提供了强大的工具。文章强调,理解和应用这些架构原则对于构建高效、可靠的AI系统至关重要,未来AI的发展将依赖于智能体之间的协作与反思能力。原创 2025-04-18 21:00:00 · 1233 阅读 · 8 评论 -
AI agents系列之AI工作流和AI智能体对比
本文深入探讨了AI工作流与智能体的核心区别与应用场景。工作流如同严格遵循的食谱,通过预设路径协调LLM和工具,适合结构化任务;而智能体则像自主决策的厨师,动态控制流程,适用于开放性问题。文章详细解析了提示链、并行化、路由等五种工作流模式,以及智能体的自主决策机制,并通过烹饪比喻生动阐释二者差异。最后强调"最适合的才是最好的"原则,建议从简单方案起步,逐步引入复杂性,同时提供框架选型指导和实现注意事项,为开发者构建高效可靠的AI系统提供实用指南。原创 2025-04-18 00:00:00 · 1181 阅读 · 1 评论 -
AI Agents系列之AI代理的类型
本文详细介绍了AI代理的多种类型,包括简单反射代理、基于模型的反射代理、基于目标的代理、基于效用的代理、学习代理、层级代理和多代理系统。每种代理都有其独特的实现方式、优势和局限性,并适用于不同的应用场景。通过实际案例,如亚马逊Bedrock、谷歌Bard和AutoGPT等,展示了这些代理在现实世界中的应用。文章还探讨了AI代理在各行业的变革性应用,并展望了未来技术进步对智能代理系统发展的推动作用。原创 2025-04-17 00:00:00 · 1939 阅读 · 23 评论 -
AI agents系列之智能体框架介绍
本文深入探讨了AI智能体框架的核心概念与主流工具,重点解析了LangGraph的图结构工作流设计。通过对比LangChain、CrewAI等8大框架的特性,揭示了智能体技术在动态决策、多任务协作中的优势。实战部分演示了如何构建带记忆功能和人类干预的聊天机器人,涵盖状态管理、工具集成等关键技术。文章强调智能体框架正推动AI向自主化、结构化方向发展,为开发者提供了构建复杂AI系统的模块化方案,预示着交互式智能应用的新未来。原创 2025-04-16 00:00:00 · 1215 阅读 · 11 评论 -
AI agents系列之全从零开始构建
本文详细介绍了如何从零开始构建一个智能代理。文章首先解释了智能代理的定义和类型,随后通过 Python 实现了一个能够根据用户输入选择并执行工具的智能代理。实现过程包括环境搭建、模型定义、工具创建、工具箱构建以及智能代理类的实现。最终,通过示例展示了智能代理如何处理用户输入并执行任务。文章强调了这种结构化方法在构建智能、交互式智能代理中的重要性,并展望了智能代理在各行业的应用前景。原创 2025-04-15 00:00:00 · 1075 阅读 · 0 评论 -
AI agents系列之全面介绍
这篇文章全面介绍了AI代理的演变、核心组件、工作原理及其应用领域。文章从LLM(大型语言模型)到AI代理的转变讲起,指出AI代理是具有自主性的系统,能够感知环境、推理决策并采取行动以实现目标。其核心组件包括感知、推理、行动、知识库、学习和通信接口。文章通过“感知-规划-行动”周期详细解释了AI代理如何与环境交互,并探讨了AI代理在不同领域的应用,如自动驾驶、智能助手等。最后,文章强调了AI代理的潜力和面临的挑战,呼吁关注通用人工智能、人机协作和伦理考量,以推动技术的积极发展。原创 2025-04-14 00:00:00 · 1507 阅读 · 0 评论 -
解密CHASE-SQL和XiYan-SQL多智能体AI如何最终实现TEXT2SQL的突破
本文探讨了文本到SQL(Text-to-SQL)技术的最新进展,重点介绍了CHASE-SQL和XiYan-SQL两个创新框架。文本到SQL旨在将自然语言问题转换为数据库可执行的SQL查询,但长期以来面临自然语言模糊性、数据库结构复杂性等挑战。CHASE-SQL通过多路径推理生成多样化的SQL候选答案,并利用训练有素的选择代理进行智能筛选;而XiYan-SQL则采用多生成器集成框架,结合微调模型和上下文学习,同时引入M-Schema提升数据库结构表示效果。原创 2025-04-13 20:00:00 · 1979 阅读 · 1 评论 -
MCP协议支持的七大AI框架和使用代码案例
MCP让AI工具管理从「俄罗斯轮盘赌」变成了「儿童安全积木」——虽然偶尔还是会砸到脚(某不愿透露姓名的Claude表示:“用了MCP后,终于不用假装自己懂2024年的天气预报了!”)原创 2025-04-06 12:00:23 · 1361 阅读 · 5 评论 -
MCP Servers是什么?
MCP全称(Model Context Protocol),这货就像是给AI系统(比如大语言模型)装了个万能USB-C接口,让它们能和外部工具、数据源和服务唠嗑。简单说,就是个中间商,专门帮AI代理和数据库、API、文件系统这些资源牵线搭桥,还自带标准化话术手册。有了它,AI终于不用死啃训练数据的老本了——它能实时查资料、搞操作,活像个会用工具的聪明猴子。MCP服务器因此成了现代计算的顶梁柱,。原创 2025-04-03 19:15:00 · 911 阅读 · 0 评论 -
拥抱MCP Servers :利用Python集成AI Agent详解
现代AI助手虽强,但缺乏实时数据接入能力,常使回答沦为"纸上谈兵"。传统集成方案需要为每个数据源编写定制API,堪称开发者的"噩梦循环"。MCP协议的价值在于统一对接标准:一套协议吃遍所有数据源安全上下文访问:权限管控的标准化数据通道弹性扩展架构:无需修改核心代码即可接入新源采用MCP后,开发者能打造:✓更智能:实时数据驱动的AI系统✓更灵活:快速适应新需求的架构✓更安全:企业级管控的数据交互🔹行动指南立即部署MCP服务器实战围观开源项目MCP GitHub仓库。原创 2025-04-02 00:30:00 · 2817 阅读 · 58 评论 -
MCP服务器:AI与外部工具交互的桥梁——Python和代理AI工具集成指南
MCP服务器的核心是资源(Resource)的概念。资源代表了可以被AI模型访问的外部数据源或工具。你可以通过实现自定义资源来扩展MCP服务器的功能。# 处理自定义动作inputelse:这个示例实现了一个自定义资源,它支持一个名为"my_action"的动作。当AI模型调用这个动作时,服务器会返回处理结果[14。原创 2025-04-04 20:00:00 · 1135 阅读 · 0 评论 -
如何使用 FastAPI 构建 MCP 服务器
哎呀,各位算法界的小伙伴们!今天咱们要聊聊一个超酷的话题——MCP 协议!你可能已经听说了,Anthropic 推出了这个新玩意儿,目的是让 AI 代理和你的应用程序之间的对话变得更顺畅、更清晰。不过别担心,为你的 Python 应用程序搭建一个这样的服务器并不复杂,甚至可以说简单到让你怀疑人生!想象一下,AI 就像你的私人助理,而 MCP 就是它和你家大门之间的钥匙。让 AI 去操心那些繁琐的逻辑吧,咱就负责躺平享受成果。不管你是想连数据库还是接 API,MCP 都能帮你搞定。原创 2025-03-31 11:20:36 · 2769 阅读 · 34 评论 -
图解LLM智能体(LLM Agents):构建与运作机制的全面解析
本文深入探讨了大型语言模型(LLM)智能体的构建与运作机制,涵盖其核心组件和多智能体框架。LLM智能体通过外部工具、记忆系统和规划能力弥补了传统LLM的不足,能够执行复杂任务并展示自主行为。文章详细介绍了记忆模块(短期与长期记忆)、工具使用(如Toolformer和MCP协议)以及规划与推理技术(如ReAct和Reflexion)。此外,多智能体系统的协作框架被提出,用于解决单一智能体在工具选择、上下文复杂性和任务专业化上的局限性。生成式智能体(Generative Agents)模拟人类行为的研究展示了多原创 2025-03-18 13:35:10 · 2230 阅读 · 4 评论 -
徒手打造个人AI Agent:基于DeepSeek-R1+websearch从零构建类Manus深度探索智能体AI-Research
该系统能够在预定义的主题上进行深入研究。研究计划:这意味着创建一个研究报告大纲,这将成为系统的最终输出。将上述内容拆分为可管理的步骤。对报告的各个部分进行深入研究。针对推理所需的数据,进行全面的分析,并利用网络搜索工具支持分析。反思研究过程中不同步骤生成的数据,并改进结果。总结检索到的数据,并生成最终的研究报告。今天,我们将实现上述所有步骤,而不使用任何LLM编排框架。首先,我们需要定义整个系统的状态,该状态将在代理运行过程中不断演变,并被系统的不同部分选择性地使用。原创 2025-03-16 00:15:00 · 2029 阅读 · 17 评论