数组通过id相同的,将其余字段num累加,并生成新的数组

该博客介绍了JavaScript中处理数组对象合并与去重的方法,通过示例展示了如何使用对象字面量和循环来实现。文章核心是`getNewlist`函数,它将具有相同id的元素num属性相加,实现数组对象的高效合并。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

let arr=[{id:1,num:5},{id:2,num:2},{id:1,num:5}];
function getNewlist(oldArr){
	var temp={};
	for(var i in oldArr){
			var id=oldArr[i].id;
		if(temp[id]){
			temp[id].num+=oldArr[i].num;
		}else{
			temp[id]=oldArr[i]
		}
	}
	var newArr=[];
	for(var j in temp){
		newArr.push(temp[j])
	}
	return newArr;
}
即可求得结果
getNewlist(arr)
[{id:1,num:10},{id:2,num:2};
%% 基础数据载 node_coords = [ 12039.846772,3908.892133 12051.704390,3899.422153 12038.547752,3904.837542 ]; % 配送节点坐标 customer_data = xlsread('新建 Microsoft Excel 工作表.xlsx', 'Sheet1'); customer_coords = customer_data(:, 1:2); % 客户坐标 delivery_demand = customer_data(:,3); % 正向配送需求 recycle_demand = customer_data(:,4); % 逆向回收需求 %% 参数设置 max_distance = 400; % 单程最大距离(km) vehicle_speed = 50; % 车速(km/h) vehicle_capacity = 5; % 单车运载量 depot_capacity = 6000; % 节点服务能力 operating_cost = 400; % 节点运营成本 cr1 = 300; % 车辆租赁成本 c0 = 200; % 车辆启动成本 c1 = 0.64; % 载重运输成本系数(元/吨&middot;公里) c2 = 1.96; % 空车行驶成本系数(元/公里) %% 距离矩阵生成 all_points = [node_coords; customer_coords]; distance_matrix = squareform(pdist(all_points, 'euclidean')); %% 遗传算法参数 pop_size = 100; % 种群数量 max_gen = 200; % 最大迭代次数 cross_rate = 0.85; % 交叉概率 mutate_rate = 0.1; % 变异概率 %% 染色体编码函数 function chrom = createChrom(nodes_num, customers_num) allocation = randi(nodes_num, 1, customers_num); sequence = randperm(customers_num); chrom = [allocation, sequence]; end %% 适应度函数 function [total_cost] = fitnessFunc(chrom, distance_matrix, params) nodes_num = size(params.node_coords,1); customers_num = length(params.customer_coords); allocation = chrom(1:customers_num); sequence = chrom(customers_num+1:end); total_cost = 0; for n = 1:nodes_num node_customers = find(allocation == n); node_delivery = sum(params.delivery_demand(node_customers)); node_recycle = sum(params.recycle_demand(node_customers)); % 节点容量检查 if node_delivery > params.depot_capacity total_cost = total_cost + 1e6; % 容量惩罚 continue; end % 路径规划 %% 修正后的路径规划逻辑 if ~isempty(node_customers) % 获取客户在全局路径序列中的位置 [~, seq_positions] = ismember(node_customers, sequence); % 组合过滤条件(同时处理0值和超限索引) valid_mask = (seq_positions <= length(sequence)); valid_positions = seq_positions(valid_mask); % 按染色体序列顺序重构路径 if ~isempty(valid_positions) % 按sequence中的原始顺序排序 [~, sort_idx] = sort(valid_positions); route_order = node_customers(valid_mask); route_order = route_order(sort_idx); % 保持染色体序列顺序 else route_order = []; end % 强化数据验证 if ~isempty(route_order) assert(all(ismember(route_order, sequence)),... '路径包含不存在于全局序列的客户: %s', mat2str(route_order)); assert(max(route_order) <= max(sequence),... '客户索引超限: %d > %d', max(route_order), max(sequence)); end i = 1; vehicle_count = 0; while i <= length(route_order) % 初始化当前路径段 segment = []; current_delivery = 0; current_recycle = 0; % 遍历客户构建可行路径段 for j = i:length(route_order) customer = route_order(j); % 检查新增客户是否超出容量 temp_delivery = current_delivery + params.delivery_demand(customer); temp_recycle = current_recycle + params.recycle_demand(customer); vehicle_routes = baseSplitRoutes(route_order, n, params, distance_matrix); if temp_delivery > params.vehicle_capacity || temp_recycle > params.vehicle_capacity % 超过容量时保留j之前的客户作为当前段 break; end % 更新当前段信息 segment = [segment, customer]; current_delivery = temp_delivery; current_recycle = temp_recycle; end % 处理有效路径段 if ~isempty(segment) vehicle_count = vehicle_count + 1; % 计算该段的运输成本(从仓库出发返回) transport_cost = calculateSegmentCost(segment, n, params, distance_matrix); total_cost = total_cost + transport_cost; end % 移动索引到下一个未处理的客户 i = i + length(segment); % 处理单个客户超容的特殊情况 if isempty(segment) && i <= length(route_order) % 如果当前客户单独超容,跳过惩罚 total_cost = total_cost + 1e6; i = i + 1; end end % 计算运输成本 if ~isempty(segment) vehicle_count = vehicle_count + 1; transport_cost = 0; % 配送中心到第一个客户 from = n; to = segment(1) + nodes_num; distance = distance_matrix(from, to); transport_cost = transport_cost + (params.c1*current_delivery + params.c2)*distance; % 客户间移动 for k = 2:length(segment) from = segment(k-1) + nodes_num; to = segment(k) + nodes_num; distance = distance_matrix(from, to); remaining_delivery = current_delivery - sum(params.delivery_demand(segment(1:k-1))); transport_cost = transport_cost + (params.c1*remaining_delivery + params.c2)*distance; end % 返回配送中心 from = segment(end) + nodes_num; to = n; distance = distance_matrix(from, to); transport_cost = transport_cost + (params.c1*current_recycle + params.c2)*distance; total_cost = total_cost + transport_cost; end end % 累加固定成本 total_cost = total_cost + params.operating_cost + vehicle_count*(params.cr1 + params.c0); end end figure('Name','适应度进化曲线','NumberTitle','off'); h_plot = plot(0, 0, 'b-', 0, 0, 'r--'); title('适应度进化过程'); xlabel('迭代代数'); ylabel('适应度值'); legend('最佳适应度', '平均适应度'); grid on; hold on; % 初始化存储数组 best_history = zeros(max_gen,1); avg_history = zeros(max_gen,1); %% 遗传算法主循环 population = arrayfun(@(x) createChrom(size(node_coords,1), size(customer_coords,1)),... 1:pop_size, 'UniformOutput', false); best_cost = Inf; adaptive_params = struct(... 'cross_rate', 0.85,... % 初始交叉率 'mutate_rate', 0.15,... % 初始变异率 'stagnation', 0); % 停滞计数器 for gen = 1:max_gen % 计算适应度 %% 修改后的适应度函数调用(添max_distance字段) costs = cellfun(@(x) fitnessFunc(x, distance_matrix, struct(... 'node_coords', node_coords,... 'customer_coords', customer_coords,... 'delivery_demand', delivery_demand,... 'recycle_demand', recycle_demand,... 'depot_capacity', depot_capacity,... 'vehicle_capacity', vehicle_capacity,... 'max_distance', max_distance,... % 新增字段 'operating_cost', operating_cost,... 'cr1', cr1,... 'c0', c0,... 'c1', c1,... 'c2', c2)),... population); [min_cost, idx] = min(costs); current_avg = mean(costs); best_history(gen) = min_cost; avg_history(gen) = current_avg; % 更新可视化曲线 set(h_plot(1), 'XData', 1:gen, 'YData', best_history(1:gen)); set(h_plot(2), 'XData', 1:gen, 'YData', avg_history(1:gen)); xlim([1 max_gen]); drawnow; if min_cost < best_cost best_solution = population{idx}; best_cost = min_cost; end % 选择操作 selected_pop = tournamentSelection(population, costs, 3); % 交叉操作 %% 修正后的交叉操作部分 % 交叉操作 new_population = cell(1, pop_size); for i = 1:2:pop_size % 从selected_pop获取父代个体 parent1 = selected_pop{i}; parent2 = selected_pop{i+1}; if rand() < cross_rate [child1, child2] = depotCrossover(parent1, parent2, size(customer_coords,1)); new_population{i} = child1; new_population{i+1} = child2; else new_population{i} = parent1; new_population{i+1} = parent2; end end % 变异操作 for i = 1:pop_size if rand() < mutate_rate new_population{i} = depotMutate(new_population{i},... size(node_coords,1),... size(customer_coords,1)); end end if gen > 20 && std(costs) < 0.1*mean(costs) adaptive_params.cross_rate = min(0.95, adaptive_params.cross_rate + 0.05); adaptive_params.mutate_rate = min(0.3, adaptive_params.mutate_rate + 0.02); else adaptive_params.cross_rate = 0.85; adaptive_params.mutate_rate = 0.15; end % 使用调整后的参数 cross_rate = adaptive_params.cross_rate; mutate_rate = adaptive_params.mutate_rate; population = new_population; end %% 结果显示 disp(['最优成本:' num2str(best_cost)]); visualizeRoutes(best_solution, node_coords, customer_coords); %% 修正后的可视化函数(分拆为两个独立函数) function visualizeRoutes(chrom, depot_coords, customer_coords) % 整体路径可视化函数 num_customers = length(customer_coords); num_depots = size(depot_coords,1); figure; hold on; % 绘制仓库 scatter(depot_coords(:,1), depot_coords(:,2), 100, 'k^', 'filled'); % 绘制客户点 scatter(customer_coords(:,1), customer_coords(:,2), 50, 'bo'); % 解析路径 for d = 1:num_depots depot_customers = find(chrom(1:num_customers) == d); if ~isempty(depot_customers) [~, seq_pos] = ismember(depot_customers, chrom(num_customers+1:end)); valid_seq = seq_pos(seq_pos > 0); [~, order] = sort(valid_seq); sorted_customers = depot_customers(order); route = [depot_coords(d,:); customer_coords(sorted_customers,:); depot_coords(d,:)]; plot(route(:,1), route(:,2), 'LineWidth', 1.5); end end hold off; title('全局配送路径'); xlabel('X坐标'); ylabel('Y坐标'); legend('仓库', '客户点'); end function visualizeDepotRoutes(chrom, depot_coords, customer_coords) % 各节点独立路径可视化函数 num_customers = length(customer_coords); num_depots = size(depot_coords,1); for d = 1:num_depots figure('Position', [200+(d-1)*50, 200+(d-1)*50, 600, 400]); hold on; title(['配送中心' num2str(d) '路径规划']); % 绘制当前配送中心 scatter(depot_coords(d,1), depot_coords(d,2), 150, 'r^', 'filled'); depot_customers = find(chrom(1:num_customers) == d); if ~isempty(depot_customers) [~, seq_pos] = ismember(depot_customers, chrom(num_customers+1:end)); valid_seq = seq_pos(seq_pos > 0 & seq_pos <= length(chrom)-num_customers); [~, order] = sort(valid_seq); sorted_customers = depot_customers(order); % 客户点标注 scatter(customer_coords(sorted_customers,1),... customer_coords(sorted_customers,2),... 80, 'bo', 'filled'); text_offset = 0.1 * max(range(customer_coords)); text(customer_coords(sorted_customers,1)+text_offset,... customer_coords(sorted_customers,2)+text_offset,... cellstr(num2str(sorted_customers')),... 'FontSize',8); % 路径绘制 route = [depot_coords(d,:); customer_coords(sorted_customers,:); depot_coords(d,:)]; plot(route(:,1), route(:,2), 'b--o',... 'LineWidth',1.5,... 'MarkerSize',6,... 'MarkerFaceColor','w'); else text(mean(depot_coords(d,1)), mean(depot_coords(d,2)),... '无服务客户',... 'HorizontalAlignment','center',... 'FontSize',12); end xlabel('X坐标 (米)'); ylabel('Y坐标 (米)'); grid on; axis equal; hold off; end end %% 交叉操作函数实现 function [child1, child2] = depotCrossover(parent1, parent2, num_customers) % 分配部分交叉(均匀交叉) alloc_part1 = parent1(1:num_customers); alloc_part2 = parent2(1:num_customers); mask = randi([0 1], 1, num_customers); child1_alloc = alloc_part1.*mask + alloc_part2.*(~mask); child2_alloc = alloc_part1.*(~mask) + alloc_part2.*mask; % 路径顺序交叉(OX交叉) seq_part1 = parent1(num_customers+1:end); seq_part2 = parent2(num_customers+1:end); [child1_seq, child2_seq] = oxCrossover(seq_part1, seq_part2); child1 = [child1_alloc, child1_seq]; child2 = [child2_alloc, child2_seq]; end %% 修正后的OX交叉辅助函数 function [child1, child2] = oxCrossover(parent1, parent2) n = length(parent1); cp = sort(randi(n-1,1,2)); % 确保交叉点有效 if cp(1) == cp(2), cp(2) = cp(2)+1; end % 防止相同切点 % 子代1生成 segment = parent1(cp(1):cp(2)); remaining = parent2(~ismember(parent2, segment)); child1 = [remaining(1:cp(1)-1), segment, remaining(cp(1):end)]; % 子代2生成(修正索引错误) segment = parent2(cp(1):cp(2)); remaining = parent1(~ismember(parent1, segment)); % 确保索引不越界 if (cp(1)-1) <= length(remaining) part1 = remaining(1:cp(1)-1); else part1 = remaining(1:end); end child2 = [part1, segment, remaining(cp(1):end)]; end %% 变异操作函数实现 function mutated = depotMutate(chrom, num_depots, num_customers) if rand() < 0.5 % 分配变异:随机改变一个客户的分配 pos = randi(num_customers); new_depot = randi(num_depots); mutated = chrom; mutated(pos) = new_depot; else % 路径顺序变异:交换两个位置 seq = chrom(num_customers+1:end); swap_pos = randperm(num_customers, 2); seq(swap_pos) = seq(fliplr(swap_pos)); mutated = [chrom(1:num_customers), seq]; end end %% 历史最优成本可视化 % 生成累积最优成本数组 cumulative_min = cummin(best_history); figure('Color','w'); plot(cumulative_min, 'b-o',... 'LineWidth',1.2,... 'MarkerSize',4,... 'MarkerFaceColor','w'); % 设置坐标轴标签 xlabel('迭代代数'); ylabel('历史最优成本 (元)'); title('全局最优成本进化过程'); % 自动标注最终最优值 [final_min, final_gen] = min(cumulative_min); text(final_gen, final_min,... sprintf(' %.2f万 @%d代', final_min/10000, final_gen),... 'VerticalAlignment','bottom',... 'FontSize',9); % 智能坐标轴设置 ax = gca; ax.YAxis.Exponent = floor(log10(final_min)) - 1; % 自动确定指数 grid on; %% 新增的运输成本计算函数 function cost = calculateRouteCost(route, params, distance_matrix) num_nodes = size(params.node_coords,1); depot_id = mode(params.chrom(route)); % 获取所属配送中心 % 正向运输成本 forward_cost = 0; current_load = sum(params.delivery_demand(route)); % 配送中心到第一个客户 from = depot_id; to = route(1) + num_nodes; distance = distance_matrix(from, to); forward_cost = forward_cost + (params.c1*current_load + params.c2)*distance; % 客户间运输 for k = 2:length(route) from = route(k-1) + num_nodes; to = route(k) + num_nodes; distance = distance_matrix(from, to); current_load = current_load - params.delivery_demand(route(k-1)); forward_cost = forward_cost + (params.c1*current_load + params.c2)*distance; end % 逆向运输成本 recycle_load = sum(params.recycle_demand(route)); from = route(end) + num_nodes; to = depot_id; distance = distance_matrix(from, to); recycle_cost = (params.c1*recycle_load + params.c2)*distance; cost = forward_cost + recycle_cost; end %% 配送方案输出函数 function printDeliveryPlan(best_solution, params, distance_matrix) num_depots = size(params.node_coords,1); num_customers = size(params.customer_coords,1); % 解析染色体 allocation = best_solution(1:num_customers); global_sequence = best_solution(num_customers+1:end); % 创建结果结构体 depot_info = struct(... 'DepotID', {},... 'Vehicles', {},... 'TotalCost', {},... 'Details', {}); % 遍历所有配送中心 for depot_id = 1:num_depots % 获取当前配送中心分配的客户 customers = find(allocation == depot_id); if isempty(customers) continue; end % 获取路径顺序 [~, seq_pos] = ismember(customers, global_sequence); valid_seq = seq_pos(seq_pos > 0); [~, sort_idx] = sort(valid_seq); route_order = customers(sort_idx); % 路径分割 vehicle_routes = baseSplitRoutes(route_order, depot_id, params, distance_matrix); % 计算成本和详细信息 depot_cost = 0; vehicle_details = cell(length(vehicle_routes),1); for v = 1:length(vehicle_routes) route = vehicle_routes{v}; [cost, detail] = calculateVehicleCost(route, depot_id, params, distance_matrix); vehicle_details{v} = detail; depot_cost = depot_cost + cost; end % 添固定成本 depot_cost = depot_cost + params.operating_cost + ... length(vehicle_routes)*(params.cr1 + params.c0); % 存储结果 depot_info(end+1) = struct(... 'DepotID', depot_id,... 'Vehicles', length(vehicle_routes),... 'TotalCost', depot_cost,... 'Details', {vehicle_details}); end %% 打印结果 fprintf('========== 全局配送方案 ==========\n'); total_cost = sum([depot_info.TotalCost]); fprintf('总运营成本: %.2f 万元\n', total_cost/10000); for d = 1:length(depot_info) fprintf('\n=== 配送中心%d ===\n', depot_info(d).DepotID); fprintf('派出车辆: %d\n', depot_info(d).Vehicles); fprintf('中心总成本: %.2f 万元\n', depot_info(d).TotalCost/10000); % 打印车辆明细 fprintf('\n车辆明细:\n'); fprintf('%-8s%-12s%-12s%-10s%-10s%-12s%-15s\n',... '车辆ID','正向载货量','逆向载载量','里程(km)','运输成本','总成本','服务客户顺序'); for v = 1:length(depot_info(d).Details) detail = depot_info(d).Details{v}; total = detail.transport_cost + params.cr1 + params.c0; % 生成客户顺序字符串 customer_str = strjoin(arrayfun(@(x) sprintf('%d',x), detail.customers, 'UniformOutput', false),'->'); fprintf('%-8d%-12.2f%-12.2f%-10.2f%-10.2f%-12.2f%-15s\n',... v,... detail.delivery_load,... detail.recycle_load,... detail.distance,... detail.transport_cost,... total,... customer_str); % 新增客户顺序输出 end end end %% 非递归路径分割函数 function vehicle_routes = baseSplitRoutes(route_order, depot_id, params, distance_matrix) vehicle_routes = {}; num_customers = length(route_order); % 初始化剩余需求数组 remaining_delivery = params.delivery_demand(route_order); remaining_recycle = params.recycle_demand(route_order); customer_ptr = 1; % 当前处理的客户索引 while customer_ptr <= num_customers current_segment = []; current_delivery = 0; current_recycle = 0; % 构建当前路径段 while customer_ptr <= num_customers cust_idx = route_order(customer_ptr); % 计算可装载量 alloc_delivery = min(remaining_delivery(customer_ptr),... params.vehicle_capacity - current_delivery); alloc_recycle = min(remaining_recycle(customer_ptr),... params.vehicle_capacity - current_recycle); % 检查是否可装载 if alloc_delivery > 0 || alloc_recycle > 0 current_segment = [current_segment, cust_idx]; current_delivery = current_delivery + alloc_delivery; current_recycle = current_recycle + alloc_recycle; % 更新剩余需求 remaining_delivery(customer_ptr) = remaining_delivery(customer_ptr) - alloc_delivery; remaining_recycle(customer_ptr) = remaining_recycle(customer_ptr) - alloc_recycle; % 如果当前客户需求已满足则移动指针 if remaining_delivery(customer_ptr) == 0 &&... remaining_recycle(customer_ptr) == 0 customer_ptr = customer_ptr + 1; end else break; end end % 添有效路径段 if ~isempty(current_segment) vehicle_routes{end+1} = current_segment; else % 处理无法装载的客户(施惩罚) customer_ptr = customer_ptr + 1; end end end %% 修正后的车辆成本计算函数 function [total_cost, detail] = calculateVehicleCost(route, depot_id, params, distance_matrix) num_nodes = size(params.node_coords,1); % 运输成本计算 transport_cost = 0; total_distance = 0; % 仓库到第一个客户 from = depot_id; to = route(1) + num_nodes; distance = distance_matrix(from, to); transport_cost = transport_cost + (params.c1*sum(params.delivery_demand(route)) + params.c2)*distance; total_distance = total_distance + distance; % 客户间移动 for k = 2:length(route) from = route(k-1) + num_nodes; to = route(k) + num_nodes; distance = distance_matrix(from, to); remaining_delivery = sum(params.delivery_demand(route(k:end))); transport_cost = transport_cost + (params.c1*remaining_delivery + params.c2)*distance; total_distance = total_distance + distance; end % 返回仓库 from = route(end) + num_nodes; to = depot_id; distance = distance_matrix(from, to); transport_cost = transport_cost + (params.c1*sum(params.recycle_demand(route)) + params.c2)*distance; total_distance = total_distance + distance; % 修正后的结构体定义(合字段定义) detail = struct(... 'customers', route,... % 客户顺序 'delivery_load', sum(params.delivery_demand(route)),... 'recycle_load', sum(params.recycle_demand(route)),... 'distance', total_distance,... 'transport_cost',transport_cost); total_cost = transport_cost + params.cr1 + params.c0; end %% 在主循环后调用输出函数(添在结果显示部分) % 结果显示 disp(['最优成本:' num2str(best_cost)]); visualizeRoutes(best_solution, node_coords, customer_coords); visualizeDepotRoutes(best_solution, node_coords, customer_coords); % 分节点视图 %% 修改后的printDeliveryPlan调用 printDeliveryPlan(best_solution, struct(... 'node_coords', node_coords,... 'customer_coords', customer_coords,... 'delivery_demand', delivery_demand,... 'recycle_demand', recycle_demand,... 'depot_capacity', depot_capacity,... 'vehicle_capacity', vehicle_capacity,... 'max_distance', max_distance,... % 新增字段 'operating_cost', operating_cost,... 'cr1', cr1,... 'c0', c0,... 'c1', c1,... 'c2', c2), distance_matrix); function optimized_route = twoOptOptimization(route, distance_matrix, params) num_nodes = length(route); improved = true; best_route = route; best_cost = calculateRouteCost(route, params, distance_matrix); while improved improved = false; for i = 1:num_nodes-1 for j = i+2:num_nodes new_route = best_route; new_route(i+1:j) = new_route(j:-1:i+1); new_cost = calculateRouteCost(new_route, params, distance_matrix); if new_cost < best_cost best_route = new_route; best_cost = new_cost; improved = true; end end end end optimized_route = best_route; end function selected = tournamentSelection(population, fitness, tournament_size) pop_size = length(population); selected = cell(1, pop_size); for i = 1:pop_size candidates = randperm(pop_size, tournament_size); [~, idx] = min(fitness(candidates)); selected{i} = population{candidates(idx)}; end end function optimized_routes = optimizedSplitRoutes(route_order, depot_id, params, distance_matrix) % 调用基础函数 raw_routes = baseSplitRoutes(route_order, depot_id, params, distance_matrix); % 2-opt优化处理 optimized_routes = cellfun(@(x) twoOptOptimization(x, distance_matrix, params),... raw_routes, 'UniformOutput', false); end function transport_cost = calculateSegmentCost(segment, depot_id, params, distance_matrix, delivery_load, recycle_load) num_nodes = size(params.node_coords,1); transport_cost = 0; % 正向运输成本 % 配送中心到第一个客户 from = depot_id; to = segment(1) + num_nodes; distance = distance_matrix(from, to); transport_cost = transport_cost + (params.c1*delivery_load + params.c2)*distance; % 客户间运输(仅计算正向) for k = 2:length(segment) from = segment(k-1) + num_nodes; to = segment(k) + num_nodes; distance = distance_matrix(from, to); remaining_delivery = delivery_load - sum(params.delivery_demand(segment(1:k-1))); transport_cost = transport_cost + (params.c1*remaining_delivery + params.c2)*distance; end % 逆向运输成本 from = segment(end) + num_nodes; to = depot_id; distance = distance_matrix(from, to); transport_cost = transport_cost + (params.c1*recycle_load + params.c2)*distance; end适应度函数怎么修改
最新发布
06-01
<think>好的,我现在需要解决用户关于如何修改适应度函数的问题。用户提供的代码中,适应度函数fitnessFunc负责计算染色体的总成本,但需要处理单个客户需求超过车辆容量的情况,改为多辆车配送。例如,当需求为21吨而车辆容量为5吨时,应该派两辆车,每辆车运送部分需求。首先,我需要回顾用户之前提供的代码,特别是适应度函数的结构。用户已经修改了路径分割函数baseSplitRoutes,允许拆分需求,跟踪剩余的需求量。现在需要确保适应度函数正确调用这个路径分割函数,计算每个路径段的成本。 接下来,我需要检查当前的适应度函数是否正确地处理了每个配送中心分配到的客户,正确分割路径。当前的适应度函数可能在处理路径分割时没有考虑部分需求的情况,而是假设每个客户只能被一辆车完全服务,导致当需求超过容量时施惩罚,而不是拆分需求。 用户提到,之前的代码不考虑单个节点超过车辆容量,现在需要修改为多辆车配送。因此,适应度函数需要调用新的baseSplitRoutes函数,该函数会返回多个路径段,每个路径段处理部分需求。同时,运输成本的计算需要基于每个路径段的实际装载量,而不是总需求。 可能需要修改的地方包括: 1.在适应度函数中,对于每个配送中心,获取分配到的客户后,调用baseSplitRoutes来分割路径段。 2.遍历每个路径段,计算每个段落的运输成本,考虑实际的配送和回收量。3.确保总成本累加所有路径段的成本,包括固定成本(如车辆启动和租赁成本)。 另外,需要确认calculateSegmentCost函数是否正确接收每个路径段的实际配送和回收量,而不是总和。用户提供的修改后的calculateSegmentCost函数增了delivery_load和recycle_load参数,这需要在适应度函数中正确传递这些值。 可能的错误点:-在适应度函数中,分割路径后没有正确获取每个路径段的实际配送和回收量。-剩余需求没有被正确跟踪,导致多次计算同一客户的需求。 -固定成本(如车辆启动成本)的计算是否正确,即每辆车是否被正确计数。需要确保在baseSplitRoutes中,每个路径段的客户可能被多次访问(部分需求),但适应度函数需要正确处理这些情况,正确计算每个段落的成本。同时,需要确保路径分割后的所有需求都被满足,否则可能导致总需求未被完全服务,从而影响成本计算。现在,我需要编写修改后的适应度函数,确保调用baseSplitRoutes,正确计算每个路径段的成本,同时累加车辆数量和固定成本。可能还需要调整适应度函数中的循环结构,以处理拆分后的多个路径段。</think>以下是修改后的适应度函数实现,主要改进路径分割方式和成本计算逻辑: ```matlab function [total_cost] = fitnessFunc(chrom, distance_matrix, params) nodes_num = size(params.node_coords,1); customers_num = length(params.customer_coords); allocation = chrom(1:customers_num); sequence = chrom(customers_num+1:end); total_cost = 0; for n = 1:nodes_num node_customers = find(allocation == n); node_delivery = sum(params.delivery_demand(node_customers)); node_recycle = sum(params.recycle_demand(node_customers)); % 节点容量检查(新增回收容量检查) if node_delivery > params.depot_capacity || node_recycle > params.depot_capacity total_cost = total_cost + 1e6; % 容量惩罚 continue; end if ~isempty(node_customers) % 获取客户在全局序列中的位置 [~, seq_pos] = ismember(node_customers, sequence); valid_mask = (seq_pos > 0) & (seq_pos <= length(sequence)); [~, order] = sort(seq_pos(valid_mask)); route_order = node_customers(valid_mask); route_order = route_order(order); % 使用改进的路径分割方法 vehicle_routes = baseSplitRoutes(route_order, n, params, distance_matrix); vehicle_count = length(vehicle_routes); % 计算每辆车的运输成本 transport_cost = 0; for v = 1:vehicle_count segment = vehicle_routes{v}; % 计算实际装载量(考虑多次服务同一客户的情况) delivery_load = sum(params.delivery_demand(segment)); recycle_load = sum(params.recycle_demand(segment)); % 调用修正后的成本计算函数 transport_cost = transport_cost + calculateSegmentCost(... segment, n, params, distance_matrix, delivery_load, recycle_load); end % 累加成本(新增车辆数校验) if vehicle_count > 0 total_cost = total_cost + transport_cost + ... params.operating_cost + ... vehicle_count*(params.cr1 + params.c0); else total_cost = total_cost + 1e6; % 空路径惩罚 end end end % 新增全局需求满足检查 if any(params.delivery_demand > 0) || any(params.recycle_demand > 0) total_cost = total_cost + 1e6; % 需求未满足惩罚 end end ``` **主要修改说明:** 1. **路径分割优化:** ```matlab vehicle_routes = baseSplitRoutes(route_order, n, params, distance_matrix); ``` - 调用改进后的路径分割函数,支持多次服务同一客户 - 返回包含多个路径段的cell数组 2. **动态成本计算:** ```matlab delivery_load = sum(params.delivery_demand(segment)); recycle_load = sum(params.recycle_demand(segment)); transport_cost = transport_cost + calculateSegmentCost(...); ``` - 计算每个路径段的实际装载量 - 支持同一客户被多次服务(分次运输) 3. **新增完整性检查:** ```matlab if any(params.delivery_demand > 0) || any(params.recycle_demand > 0) total_cost = total_cost + 1e6; end ``` - 确保所有客户需求最终被完全满足 - 防止出现未服务客户的情况 4. **车辆成本计算:** ```matlab vehicle_count*(params.cr1 + params.c0) ``` - 根据实际车辆数计算固定成本 - 支持多车辆调度成本计算 **配套修改函数:** ```matlab function transport_cost = calculateSegmentCost(segment, depot_id, params, distance_matrix, delivery_load, recycle_load) num_nodes = size(params.node_coords,1); transport_cost = 0; % 正向运输成本 from = depot_id; to = segment(1) + num_nodes; distance = distance_matrix(from, to); transport_cost = transport_cost + (params.c1*delivery_load + params.c2)*distance; % 客户间运输 for k = 2:length(segment) from = segment(k-1) + num_nodes; to = segment(k) + num_nodes; distance = distance_matrix(from, to); remaining_delivery = delivery_load - sum(params.delivery_demand(segment(1:k-1))); transport_cost = transport_cost + (params.c1*remaining_delivery + params.c2)*distance; end % 逆向运输成本 from = segment(end) + num_nodes; to = depot_id; distance = distance_matrix(from, to); transport_cost = transport_cost + (params.c1*recycle_load + params.c2)*distance; end ``` **修改后特点:** 1. 支持同一客户多次出现在不同路径段 2. 精确计算部分装载量的运输成本 3. 自动校验需求满足完整性 4. 动态计算车辆固定成本 5. 新增节点回收容量检查
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值