%% 基础数据加载
node_coords = [
12039.846772,3908.892133
12051.704390,3899.422153
12038.547752,3904.837542 ]; % 配送节点坐标
customer_data = xlsread('新建 Microsoft Excel 工作表.xlsx', 'Sheet1');
customer_coords = customer_data(:, 1:2); % 客户坐标
delivery_demand = customer_data(:,3); % 正向配送需求
recycle_demand = customer_data(:,4); % 逆向回收需求
%% 参数设置
max_distance = 400; % 单程最大距离(km)
vehicle_speed = 50; % 车速(km/h)
vehicle_capacity = 5; % 单车运载量
depot_capacity = 6000; % 节点服务能力
operating_cost = 400; % 节点运营成本
cr1 = 300; % 车辆租赁成本
c0 = 200; % 车辆启动成本
c1 = 0.64; % 载重运输成本系数(元/吨·公里)
c2 = 1.96; % 空车行驶成本系数(元/公里)
%% 距离矩阵生成
all_points = [node_coords; customer_coords];
distance_matrix = squareform(pdist(all_points, 'euclidean'));
%% 遗传算法参数
pop_size = 100; % 种群数量
max_gen = 200; % 最大迭代次数
cross_rate = 0.85; % 交叉概率
mutate_rate = 0.1; % 变异概率
%% 染色体编码函数
function chrom = createChrom(nodes_num, customers_num)
allocation = randi(nodes_num, 1, customers_num);
sequence = randperm(customers_num);
chrom = [allocation, sequence];
end
%% 适应度函数
function [total_cost] = fitnessFunc(chrom, distance_matrix, params)
nodes_num = size(params.node_coords,1);
customers_num = length(params.customer_coords);
allocation = chrom(1:customers_num);
sequence = chrom(customers_num+1:end);
total_cost = 0;
for n = 1:nodes_num
node_customers = find(allocation == n);
node_delivery = sum(params.delivery_demand(node_customers));
node_recycle = sum(params.recycle_demand(node_customers));
% 节点容量检查
if node_delivery > params.depot_capacity
total_cost = total_cost + 1e6; % 容量惩罚
continue;
end
% 路径规划
%% 修正后的路径规划逻辑
if ~isempty(node_customers)
% 获取客户在全局路径序列中的位置
[~, seq_positions] = ismember(node_customers, sequence);
% 组合过滤条件(同时处理0值和超限索引)
valid_mask = (seq_positions <= length(sequence));
valid_positions = seq_positions(valid_mask);
% 按染色体序列顺序重构路径
if ~isempty(valid_positions)
% 按sequence中的原始顺序排序
[~, sort_idx] = sort(valid_positions);
route_order = node_customers(valid_mask);
route_order = route_order(sort_idx); % 保持染色体序列顺序
else
route_order = [];
end
% 强化数据验证
if ~isempty(route_order)
assert(all(ismember(route_order, sequence)),...
'路径包含不存在于全局序列的客户: %s', mat2str(route_order));
assert(max(route_order) <= max(sequence),...
'客户索引超限: %d > %d', max(route_order), max(sequence));
end
i = 1;
vehicle_count = 0;
while i <= length(route_order)
% 初始化当前路径段
segment = [];
current_delivery = 0;
current_recycle = 0;
% 遍历客户构建可行路径段
for j = i:length(route_order)
customer = route_order(j);
% 检查新增客户是否超出容量
temp_delivery = current_delivery + params.delivery_demand(customer);
temp_recycle = current_recycle + params.recycle_demand(customer);
vehicle_routes = baseSplitRoutes(route_order, n, params, distance_matrix);
if temp_delivery > params.vehicle_capacity || temp_recycle > params.vehicle_capacity
% 超过容量时保留j之前的客户作为当前段
break;
end
% 更新当前段信息
segment = [segment, customer];
current_delivery = temp_delivery;
current_recycle = temp_recycle;
end
% 处理有效路径段
if ~isempty(segment)
vehicle_count = vehicle_count + 1;
% 计算该段的运输成本(从仓库出发并返回)
transport_cost = calculateSegmentCost(segment, n, params, distance_matrix);
total_cost = total_cost + transport_cost;
end
% 移动索引到下一个未处理的客户
i = i + length(segment);
% 处理单个客户超容的特殊情况
if isempty(segment) && i <= length(route_order)
% 如果当前客户单独超容,跳过并施加惩罚
total_cost = total_cost + 1e6;
i = i + 1;
end
end
% 计算运输成本
if ~isempty(segment)
vehicle_count = vehicle_count + 1;
transport_cost = 0;
% 配送中心到第一个客户
from = n;
to = segment(1) + nodes_num;
distance = distance_matrix(from, to);
transport_cost = transport_cost + (params.c1*current_delivery + params.c2)*distance;
% 客户间移动
for k = 2:length(segment)
from = segment(k-1) + nodes_num;
to = segment(k) + nodes_num;
distance = distance_matrix(from, to);
remaining_delivery = current_delivery - sum(params.delivery_demand(segment(1:k-1)));
transport_cost = transport_cost + (params.c1*remaining_delivery + params.c2)*distance;
end
% 返回配送中心
from = segment(end) + nodes_num;
to = n;
distance = distance_matrix(from, to);
transport_cost = transport_cost + (params.c1*current_recycle + params.c2)*distance;
total_cost = total_cost + transport_cost;
end
end
% 累加固定成本
total_cost = total_cost + params.operating_cost + vehicle_count*(params.cr1 + params.c0);
end
end
figure('Name','适应度进化曲线','NumberTitle','off');
h_plot = plot(0, 0, 'b-', 0, 0, 'r--');
title('适应度进化过程');
xlabel('迭代代数');
ylabel('适应度值');
legend('最佳适应度', '平均适应度');
grid on;
hold on;
% 初始化存储数组
best_history = zeros(max_gen,1);
avg_history = zeros(max_gen,1);
%% 遗传算法主循环
population = arrayfun(@(x) createChrom(size(node_coords,1), size(customer_coords,1)),...
1:pop_size, 'UniformOutput', false);
best_cost = Inf;
adaptive_params = struct(...
'cross_rate', 0.85,... % 初始交叉率
'mutate_rate', 0.15,... % 初始变异率
'stagnation', 0); % 停滞计数器
for gen = 1:max_gen
% 计算适应度
%% 修改后的适应度函数调用(添加max_distance字段)
costs = cellfun(@(x) fitnessFunc(x, distance_matrix, struct(...
'node_coords', node_coords,...
'customer_coords', customer_coords,...
'delivery_demand', delivery_demand,...
'recycle_demand', recycle_demand,...
'depot_capacity', depot_capacity,...
'vehicle_capacity', vehicle_capacity,...
'max_distance', max_distance,... % 新增字段
'operating_cost', operating_cost,...
'cr1', cr1,...
'c0', c0,...
'c1', c1,...
'c2', c2)),...
population);
[min_cost, idx] = min(costs);
current_avg = mean(costs);
best_history(gen) = min_cost;
avg_history(gen) = current_avg;
% 更新可视化曲线
set(h_plot(1), 'XData', 1:gen, 'YData', best_history(1:gen));
set(h_plot(2), 'XData', 1:gen, 'YData', avg_history(1:gen));
xlim([1 max_gen]);
drawnow;
if min_cost < best_cost
best_solution = population{idx};
best_cost = min_cost;
end
% 选择操作
selected_pop = tournamentSelection(population, costs, 3);
% 交叉操作
%% 修正后的交叉操作部分
% 交叉操作
new_population = cell(1, pop_size);
for i = 1:2:pop_size
% 从selected_pop获取父代个体
parent1 = selected_pop{i};
parent2 = selected_pop{i+1};
if rand() < cross_rate
[child1, child2] = depotCrossover(parent1, parent2, size(customer_coords,1));
new_population{i} = child1;
new_population{i+1} = child2;
else
new_population{i} = parent1;
new_population{i+1} = parent2;
end
end
% 变异操作
for i = 1:pop_size
if rand() < mutate_rate
new_population{i} = depotMutate(new_population{i},...
size(node_coords,1),...
size(customer_coords,1));
end
end
if gen > 20 && std(costs) < 0.1*mean(costs)
adaptive_params.cross_rate = min(0.95, adaptive_params.cross_rate + 0.05);
adaptive_params.mutate_rate = min(0.3, adaptive_params.mutate_rate + 0.02);
else
adaptive_params.cross_rate = 0.85;
adaptive_params.mutate_rate = 0.15;
end
% 使用调整后的参数
cross_rate = adaptive_params.cross_rate;
mutate_rate = adaptive_params.mutate_rate;
population = new_population;
end
%% 结果显示
disp(['最优成本:' num2str(best_cost)]);
visualizeRoutes(best_solution, node_coords, customer_coords);
%% 修正后的可视化函数(分拆为两个独立函数)
function visualizeRoutes(chrom, depot_coords, customer_coords)
% 整体路径可视化函数
num_customers = length(customer_coords);
num_depots = size(depot_coords,1);
figure;
hold on;
% 绘制仓库
scatter(depot_coords(:,1), depot_coords(:,2), 100, 'k^', 'filled');
% 绘制客户点
scatter(customer_coords(:,1), customer_coords(:,2), 50, 'bo');
% 解析路径
for d = 1:num_depots
depot_customers = find(chrom(1:num_customers) == d);
if ~isempty(depot_customers)
[~, seq_pos] = ismember(depot_customers, chrom(num_customers+1:end));
valid_seq = seq_pos(seq_pos > 0);
[~, order] = sort(valid_seq);
sorted_customers = depot_customers(order);
route = [depot_coords(d,:);
customer_coords(sorted_customers,:);
depot_coords(d,:)];
plot(route(:,1), route(:,2), 'LineWidth', 1.5);
end
end
hold off;
title('全局配送路径');
xlabel('X坐标');
ylabel('Y坐标');
legend('仓库', '客户点');
end
function visualizeDepotRoutes(chrom, depot_coords, customer_coords)
% 各节点独立路径可视化函数
num_customers = length(customer_coords);
num_depots = size(depot_coords,1);
for d = 1:num_depots
figure('Position', [200+(d-1)*50, 200+(d-1)*50, 600, 400]);
hold on;
title(['配送中心' num2str(d) '路径规划']);
% 绘制当前配送中心
scatter(depot_coords(d,1), depot_coords(d,2), 150, 'r^', 'filled');
depot_customers = find(chrom(1:num_customers) == d);
if ~isempty(depot_customers)
[~, seq_pos] = ismember(depot_customers, chrom(num_customers+1:end));
valid_seq = seq_pos(seq_pos > 0 & seq_pos <= length(chrom)-num_customers);
[~, order] = sort(valid_seq);
sorted_customers = depot_customers(order);
% 客户点标注
scatter(customer_coords(sorted_customers,1),...
customer_coords(sorted_customers,2),...
80, 'bo', 'filled');
text_offset = 0.1 * max(range(customer_coords));
text(customer_coords(sorted_customers,1)+text_offset,...
customer_coords(sorted_customers,2)+text_offset,...
cellstr(num2str(sorted_customers')),...
'FontSize',8);
% 路径绘制
route = [depot_coords(d,:);
customer_coords(sorted_customers,:);
depot_coords(d,:)];
plot(route(:,1), route(:,2), 'b--o',...
'LineWidth',1.5,...
'MarkerSize',6,...
'MarkerFaceColor','w');
else
text(mean(depot_coords(d,1)), mean(depot_coords(d,2)),...
'无服务客户',...
'HorizontalAlignment','center',...
'FontSize',12);
end
xlabel('X坐标 (米)');
ylabel('Y坐标 (米)');
grid on;
axis equal;
hold off;
end
end
%% 交叉操作函数实现
function [child1, child2] = depotCrossover(parent1, parent2, num_customers)
% 分配部分交叉(均匀交叉)
alloc_part1 = parent1(1:num_customers);
alloc_part2 = parent2(1:num_customers);
mask = randi([0 1], 1, num_customers);
child1_alloc = alloc_part1.*mask + alloc_part2.*(~mask);
child2_alloc = alloc_part1.*(~mask) + alloc_part2.*mask;
% 路径顺序交叉(OX交叉)
seq_part1 = parent1(num_customers+1:end);
seq_part2 = parent2(num_customers+1:end);
[child1_seq, child2_seq] = oxCrossover(seq_part1, seq_part2);
child1 = [child1_alloc, child1_seq];
child2 = [child2_alloc, child2_seq];
end
%% 修正后的OX交叉辅助函数
function [child1, child2] = oxCrossover(parent1, parent2)
n = length(parent1);
cp = sort(randi(n-1,1,2)); % 确保交叉点有效
if cp(1) == cp(2), cp(2) = cp(2)+1; end % 防止相同切点
% 子代1生成
segment = parent1(cp(1):cp(2));
remaining = parent2(~ismember(parent2, segment));
child1 = [remaining(1:cp(1)-1), segment, remaining(cp(1):end)];
% 子代2生成(修正索引错误)
segment = parent2(cp(1):cp(2));
remaining = parent1(~ismember(parent1, segment));
% 确保索引不越界
if (cp(1)-1) <= length(remaining)
part1 = remaining(1:cp(1)-1);
else
part1 = remaining(1:end);
end
child2 = [part1, segment, remaining(cp(1):end)];
end
%% 变异操作函数实现
function mutated = depotMutate(chrom, num_depots, num_customers)
if rand() < 0.5
% 分配变异:随机改变一个客户的分配
pos = randi(num_customers);
new_depot = randi(num_depots);
mutated = chrom;
mutated(pos) = new_depot;
else
% 路径顺序变异:交换两个位置
seq = chrom(num_customers+1:end);
swap_pos = randperm(num_customers, 2);
seq(swap_pos) = seq(fliplr(swap_pos));
mutated = [chrom(1:num_customers), seq];
end
end
%% 历史最优成本可视化
% 生成累积最优成本数组
cumulative_min = cummin(best_history);
figure('Color','w');
plot(cumulative_min, 'b-o',...
'LineWidth',1.2,...
'MarkerSize',4,...
'MarkerFaceColor','w');
% 设置坐标轴标签
xlabel('迭代代数');
ylabel('历史最优成本 (元)');
title('全局最优成本进化过程');
% 自动标注最终最优值
[final_min, final_gen] = min(cumulative_min);
text(final_gen, final_min,...
sprintf(' %.2f万 @%d代', final_min/10000, final_gen),...
'VerticalAlignment','bottom',...
'FontSize',9);
% 智能坐标轴设置
ax = gca;
ax.YAxis.Exponent = floor(log10(final_min)) - 1; % 自动确定指数
grid on;
%% 新增的运输成本计算函数
function cost = calculateRouteCost(route, params, distance_matrix)
num_nodes = size(params.node_coords,1);
depot_id = mode(params.chrom(route)); % 获取所属配送中心
% 正向运输成本
forward_cost = 0;
current_load = sum(params.delivery_demand(route));
% 配送中心到第一个客户
from = depot_id;
to = route(1) + num_nodes;
distance = distance_matrix(from, to);
forward_cost = forward_cost + (params.c1*current_load + params.c2)*distance;
% 客户间运输
for k = 2:length(route)
from = route(k-1) + num_nodes;
to = route(k) + num_nodes;
distance = distance_matrix(from, to);
current_load = current_load - params.delivery_demand(route(k-1));
forward_cost = forward_cost + (params.c1*current_load + params.c2)*distance;
end
% 逆向运输成本
recycle_load = sum(params.recycle_demand(route));
from = route(end) + num_nodes;
to = depot_id;
distance = distance_matrix(from, to);
recycle_cost = (params.c1*recycle_load + params.c2)*distance;
cost = forward_cost + recycle_cost;
end
%% 配送方案输出函数
function printDeliveryPlan(best_solution, params, distance_matrix)
num_depots = size(params.node_coords,1);
num_customers = size(params.customer_coords,1);
% 解析染色体
allocation = best_solution(1:num_customers);
global_sequence = best_solution(num_customers+1:end);
% 创建结果结构体
depot_info = struct(...
'DepotID', {},...
'Vehicles', {},...
'TotalCost', {},...
'Details', {});
% 遍历所有配送中心
for depot_id = 1:num_depots
% 获取当前配送中心分配的客户
customers = find(allocation == depot_id);
if isempty(customers)
continue;
end
% 获取路径顺序
[~, seq_pos] = ismember(customers, global_sequence);
valid_seq = seq_pos(seq_pos > 0);
[~, sort_idx] = sort(valid_seq);
route_order = customers(sort_idx);
% 路径分割
vehicle_routes = baseSplitRoutes(route_order, depot_id, params, distance_matrix);
% 计算成本和详细信息
depot_cost = 0;
vehicle_details = cell(length(vehicle_routes),1);
for v = 1:length(vehicle_routes)
route = vehicle_routes{v};
[cost, detail] = calculateVehicleCost(route, depot_id, params, distance_matrix);
vehicle_details{v} = detail;
depot_cost = depot_cost + cost;
end
% 添加固定成本
depot_cost = depot_cost + params.operating_cost + ...
length(vehicle_routes)*(params.cr1 + params.c0);
% 存储结果
depot_info(end+1) = struct(...
'DepotID', depot_id,...
'Vehicles', length(vehicle_routes),...
'TotalCost', depot_cost,...
'Details', {vehicle_details});
end
%% 打印结果
fprintf('========== 全局配送方案 ==========\n');
total_cost = sum([depot_info.TotalCost]);
fprintf('总运营成本: %.2f 万元\n', total_cost/10000);
for d = 1:length(depot_info)
fprintf('\n=== 配送中心%d ===\n', depot_info(d).DepotID);
fprintf('派出车辆: %d\n', depot_info(d).Vehicles);
fprintf('中心总成本: %.2f 万元\n', depot_info(d).TotalCost/10000);
% 打印车辆明细
fprintf('\n车辆明细:\n');
fprintf('%-8s%-12s%-12s%-10s%-10s%-12s%-15s\n',...
'车辆ID','正向载货量','逆向载载量','里程(km)','运输成本','总成本','服务客户顺序');
for v = 1:length(depot_info(d).Details)
detail = depot_info(d).Details{v};
total = detail.transport_cost + params.cr1 + params.c0;
% 生成客户顺序字符串
customer_str = strjoin(arrayfun(@(x) sprintf('%d',x), detail.customers, 'UniformOutput', false),'->');
fprintf('%-8d%-12.2f%-12.2f%-10.2f%-10.2f%-12.2f%-15s\n',...
v,...
detail.delivery_load,...
detail.recycle_load,...
detail.distance,...
detail.transport_cost,...
total,...
customer_str); % 新增客户顺序输出
end
end
end
%% 非递归路径分割函数
function vehicle_routes = baseSplitRoutes(route_order, depot_id, params, distance_matrix)
vehicle_routes = {};
num_customers = length(route_order);
% 初始化剩余需求数组
remaining_delivery = params.delivery_demand(route_order);
remaining_recycle = params.recycle_demand(route_order);
customer_ptr = 1; % 当前处理的客户索引
while customer_ptr <= num_customers
current_segment = [];
current_delivery = 0;
current_recycle = 0;
% 构建当前路径段
while customer_ptr <= num_customers
cust_idx = route_order(customer_ptr);
% 计算可装载量
alloc_delivery = min(remaining_delivery(customer_ptr),...
params.vehicle_capacity - current_delivery);
alloc_recycle = min(remaining_recycle(customer_ptr),...
params.vehicle_capacity - current_recycle);
% 检查是否可装载
if alloc_delivery > 0 || alloc_recycle > 0
current_segment = [current_segment, cust_idx];
current_delivery = current_delivery + alloc_delivery;
current_recycle = current_recycle + alloc_recycle;
% 更新剩余需求
remaining_delivery(customer_ptr) = remaining_delivery(customer_ptr) - alloc_delivery;
remaining_recycle(customer_ptr) = remaining_recycle(customer_ptr) - alloc_recycle;
% 如果当前客户需求已满足则移动指针
if remaining_delivery(customer_ptr) == 0 &&...
remaining_recycle(customer_ptr) == 0
customer_ptr = customer_ptr + 1;
end
else
break;
end
end
% 添加有效路径段
if ~isempty(current_segment)
vehicle_routes{end+1} = current_segment;
else
% 处理无法装载的客户(施加惩罚)
customer_ptr = customer_ptr + 1;
end
end
end
%% 修正后的车辆成本计算函数
function [total_cost, detail] = calculateVehicleCost(route, depot_id, params, distance_matrix)
num_nodes = size(params.node_coords,1);
% 运输成本计算
transport_cost = 0;
total_distance = 0;
% 仓库到第一个客户
from = depot_id;
to = route(1) + num_nodes;
distance = distance_matrix(from, to);
transport_cost = transport_cost + (params.c1*sum(params.delivery_demand(route)) + params.c2)*distance;
total_distance = total_distance + distance;
% 客户间移动
for k = 2:length(route)
from = route(k-1) + num_nodes;
to = route(k) + num_nodes;
distance = distance_matrix(from, to);
remaining_delivery = sum(params.delivery_demand(route(k:end)));
transport_cost = transport_cost + (params.c1*remaining_delivery + params.c2)*distance;
total_distance = total_distance + distance;
end
% 返回仓库
from = route(end) + num_nodes;
to = depot_id;
distance = distance_matrix(from, to);
transport_cost = transport_cost + (params.c1*sum(params.recycle_demand(route)) + params.c2)*distance;
total_distance = total_distance + distance;
% 修正后的结构体定义(合并字段定义)
detail = struct(...
'customers', route,... % 客户顺序
'delivery_load', sum(params.delivery_demand(route)),...
'recycle_load', sum(params.recycle_demand(route)),...
'distance', total_distance,...
'transport_cost',transport_cost);
total_cost = transport_cost + params.cr1 + params.c0;
end
%% 在主循环后调用输出函数(添加在结果显示部分)
% 结果显示
disp(['最优成本:' num2str(best_cost)]);
visualizeRoutes(best_solution, node_coords, customer_coords);
visualizeDepotRoutes(best_solution, node_coords, customer_coords); % 分节点视图
%% 修改后的printDeliveryPlan调用
printDeliveryPlan(best_solution, struct(...
'node_coords', node_coords,...
'customer_coords', customer_coords,...
'delivery_demand', delivery_demand,...
'recycle_demand', recycle_demand,...
'depot_capacity', depot_capacity,...
'vehicle_capacity', vehicle_capacity,...
'max_distance', max_distance,... % 新增字段
'operating_cost', operating_cost,...
'cr1', cr1,...
'c0', c0,...
'c1', c1,...
'c2', c2), distance_matrix);
function optimized_route = twoOptOptimization(route, distance_matrix, params)
num_nodes = length(route);
improved = true;
best_route = route;
best_cost = calculateRouteCost(route, params, distance_matrix);
while improved
improved = false;
for i = 1:num_nodes-1
for j = i+2:num_nodes
new_route = best_route;
new_route(i+1:j) = new_route(j:-1:i+1);
new_cost = calculateRouteCost(new_route, params, distance_matrix);
if new_cost < best_cost
best_route = new_route;
best_cost = new_cost;
improved = true;
end
end
end
end
optimized_route = best_route;
end
function selected = tournamentSelection(population, fitness, tournament_size)
pop_size = length(population);
selected = cell(1, pop_size);
for i = 1:pop_size
candidates = randperm(pop_size, tournament_size);
[~, idx] = min(fitness(candidates));
selected{i} = population{candidates(idx)};
end
end
function optimized_routes = optimizedSplitRoutes(route_order, depot_id, params, distance_matrix)
% 调用基础函数
raw_routes = baseSplitRoutes(route_order, depot_id, params, distance_matrix);
% 2-opt优化处理
optimized_routes = cellfun(@(x) twoOptOptimization(x, distance_matrix, params),...
raw_routes, 'UniformOutput', false);
end
function transport_cost = calculateSegmentCost(segment, depot_id, params, distance_matrix, delivery_load, recycle_load)
num_nodes = size(params.node_coords,1);
transport_cost = 0;
% 正向运输成本
% 配送中心到第一个客户
from = depot_id;
to = segment(1) + num_nodes;
distance = distance_matrix(from, to);
transport_cost = transport_cost + (params.c1*delivery_load + params.c2)*distance;
% 客户间运输(仅计算正向)
for k = 2:length(segment)
from = segment(k-1) + num_nodes;
to = segment(k) + num_nodes;
distance = distance_matrix(from, to);
remaining_delivery = delivery_load - sum(params.delivery_demand(segment(1:k-1)));
transport_cost = transport_cost + (params.c1*remaining_delivery + params.c2)*distance;
end
% 逆向运输成本
from = segment(end) + num_nodes;
to = depot_id;
distance = distance_matrix(from, to);
transport_cost = transport_cost + (params.c1*recycle_load + params.c2)*distance;
end适应度函数怎么修改
最新发布