PCL KD-ICP实现点云精配准【2024最新版】

265 篇文章 ¥19.90 ¥99.00
本文介绍了使用KD-ICP算法进行点云精配准的方法,包括单向和双向KD-tree优化。通过构建KD-tree进行最近邻搜索,优化配准点云的精度,尤其在处理大量数据时,双向KD-tree能有效提高配准效率。文中还提及了相关参考文献,并提供了代码实现和结果展示。

在这里插入图片描述
本文由CSDN点云侠原创,原文链接,首发于:2021年3月7日。抄袭狗把自己当个狗!!!。

博客长期更新,本文最新更新时间为:2024年10月18日。代码在PCL1.14.1中测试通过
ICP基础理论参考:PCL ICP算法实现点云精配准

一、 KD-ICP配准

1、KD-tree优化的ICP

  通过构建的KD-tree实现最近邻算法,对粗配准后的点进行近邻搜索。以欧氏距离为判断标准,剔除欧氏距离大于阈值的配准关键点,保存配准精度高的点,具体步骤如下:

  1. 寻找目标点的叶节点:从根节点递归向下搜索KD-t
评论 39
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值