PCL RANSAC拟合二维圆(C++详细过程版)

本文详细介绍了如何在PCL中利用RANSAC算法拟合二维圆,包括算法原理、代码实现和结果展示。通过三点定圆的替代方法——计算三角形外接圆,实现对点云数据的圆心和半径计算。代码已在PCL1.14.0版本验证并进行了格式优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在这里插入图片描述

本文由CSDN点云侠原创,原文链接。如果你不是在点云侠的博客中看到该文章,那么此处便是不要脸的爬虫与GPT。

博客长期更新,本文最近一次更新时间为:2024年4月29日。① 重构代码书写格式,使代码看上去更好看;② 代码在PCL1.14.0版本正常运行;③添加防爬虫狗logo。

一、算法原理

  RANSAC拟合圆,一般采用的是三点定圆,然而三点定圆计算公式推导过于复杂(见:三点定圆推导公式)。因此,这里用计算三角形外接圆的方法代替(计算公式见:PCL 计算平面三角形外接圆的圆心和半径),其实现效果等同。

二、代码实

### 关于拟合算法及其实现方法 #### 最小二乘法拟合 最小二乘法是一种常用的优化技术,用于解决曲线拟合问题。对于拟合而言,其目标是最小化所有点到拟合的距离平方和。一种常见的 C 实现方式可以通过以下步骤完成[^1]: 1. **定义模型参数** 假设的标准方程为 \((x-a)^2 + (y-b)^2 = r^2\),其中 \(a, b\)心坐标,\(r\) 是半径。 2. **构建误差函数** 对于一组点集合 \(\{(x_i, y_i)\}\),计算每一点到假设的距离平方,并将其作为误差项: \[ E(a,b,r) = \sum_{i=1}^{n} [(x_i - a)^2 + (y_i - b)^2 - r^2]^2 \] 3. **求解最优参数** 使用数值优化方法(如梯度下降或高斯牛顿法),或者解析方法来找到使误差函数最小化的参数 \(a, b, r\)。 以下是基于 C 的简单实现示例代码: ```c #include <stdio.h> #include <math.h> void least_squares_circle_fit(double *x, double *y, int n, double *center_x, double *center_y, double *radius) { double sum_x = 0, sum_y = 0, sum_xx = 0, sum_xy = 0, sum_yy = 0; for(int i = 0; i < n; ++i){ sum_x += x[i]; sum_y += y[i]; sum_xx += pow(x[i], 2); sum_yy += pow(y[i], 2); sum_xy += x[i]*y[i]; } double A = ((double)n*sum_xx - pow(sum_x, 2)); double B = ((double)n*sum_xy - sum_x*sum_y); double C = ((double)n*sum_yy - pow(sum_y, 2)); *center_x = -(B*C - sum_y*(A+C)) / (2*A*C - B*B); *center_y = -(((pow(*center_x, 2))*A + sum_x*(*center_x)*B + sum_xx*C)/(B*(*center_x)+sum_x*C)); *radius = sqrt(pow((*center_x), 2) + pow((*center_y), 2) + (sum_xx + sum_yy)/n - 2*(*center_x)*(sum_x/n)-2*(*center_y)*(sum_y/n)); } int main() { double points_x[] = {1.0, 2.0, 3.0}; double points_y[] = {1.0, 2.0, 3.0}; int num_points = sizeof(points_x)/sizeof(points_x[0]); double center_x, center_y, radius; least_squares_circle_fit(points_x, points_y, num_points, &center_x, &center_y, &radius); printf("Center (%lf, %lf), Radius %lf\n", center_x, center_y, radius); } ``` --- #### 切比雪夫拟合法 切比雪夫拟合法的目标是最小化最大偏差,即所有点到拟合的最大距离差值。这种方法通常被称为“最小区域法”,适用于对精度要求较高的场景[^3]。 - 输入条件:至少需要 10 个点,最多支持 631 个点。 - 输出结果:返回心位置、半径以及度指标 F(定义为所有点到的最大距离的两倍)。 由于此方法涉及复杂的线性规划或凸优化问题,其实现难度较高。一般推荐使用专用库或工具包进行处理。 --- #### 椭拟合扩展 如果数据分布更接近椭圆形而非完美圆形,则需采用椭拟合算法。此类算法的核心在于通过二次多项式形式描述椭几何特性,并利用最小二乘原理估计最佳参数[^2]: \[ Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0 \] 具体实现可参考 OpenCV 中 `fitEllipse` 函数的功能设计。 --- ### 总结 以上介绍了三种主要的拟合方法——最小二乘法、切比雪夫法及椭拟合延伸应用。实际开发过程中可根据需求选择合适的技术路线并借助现有开源资源加速研发进程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值