大地坐标与横轴墨卡托投影(UTM)坐标互转原理

一、大地坐标系(Geographic Coordinate System)

以经纬度表示位置,使用椭球体模型(如WGS84)。 纬度 φ(-90°~90°,赤道为0°); 经度 λ(-180°~180°,本初子午线为0°)。

WGS84椭球参数

参数说明
长半轴 a6378137.0 m赤道半径
扁率 f1/298.257223563-
第一偏心率平方 ≈0.00669438 e 2 = 2 f − f 2 e^2=2f-f^2 e2=2ff2

二、UTM坐标系(Universal Transverse Mercator)

投影类型:横轴墨卡托投影(高斯-克吕格投影的全球版)。
分区规则

  • 全球分60个纵向带(每6°经度一个带);
  • 带号计算: zone = ⌊ λ + 180 6 ⌋ + 1 \text{zone} = \left\lfloor \frac{\lambda+180}{6} \right\rfloor +1 zone=6λ+180+1

坐标表示

  • 东距(Easting):中央经线为500,000米(虚假东移);
  • 北距(Northing):赤道为0米(南半球为10,000,000米虚假北移)。

三、大地坐标 → UTM坐标(正算)

  1. 计算中央经线 λ 0 = ( zone × 6 − 183 ) \lambda_{0}=(\text{zone} \times 6 - 183) λ0=(zone×6183)
  2. 转为弧度制
    ϕ rad = ϕ ⋅ π 180 , Δ λ = ( λ − λ 0 ) ⋅ π 180 \phi_{\text{rad}}=\phi \cdot \frac{\pi}{180}, \quad \Delta\lambda=(\lambda - \lambda_0) \cdot \frac{\pi}{180} ϕrad=ϕ180π,Δλ=(λλ0)180π
  3. 卯酉圈曲率半径 N = a 1 − e 2 sin ⁡ 2 ϕ rad N=\frac{a}{\sqrt{1-e^2 \sin^2 \phi_{\text{rad}}}} N=1e2sin2ϕrad a
  4. 投影公式
    Easting = k 0 N cos ⁡ ϕ rad ⋅ Δ λ ⋅ [ 1 + Δ λ 2 6 cos ⁡ 2 ϕ rad ( 1 − tan ⁡ 2 ϕ rad + η 2 ) ] + 500000 Northing = k 0 [ ∫ 0 ϕ M d ϕ + Δ λ 2 2 N sin ⁡ ϕ rad cos ⁡ ϕ rad ] \begin{align*} \text{Easting} &= k_0 N \cos \phi_{\text{rad}} \cdot \Delta\lambda \cdot \left[1 + \frac{\Delta\lambda^2}{6} \cos^2 \phi_{\text{rad}} (1 - \tan^2 \phi_{\text{rad}} + \eta^2) \right] + 500000 \\ \text{Northing} &= k_0 \left[ \int_0^\phi M d\phi + \frac{\Delta\lambda^2}{2} N \sin \phi_{\text{rad}} \cos \phi_{\text{rad}} \right] \end{align*} EastingNorthing=k0NcosϕradΔλ[1+6Δλ2cos2ϕrad(1tan2ϕrad+η2)]+500000=k0[0ϕMdϕ+2Δλ2Nsinϕradcosϕrad]
    其中 η 2 = e 2 1 − e 2 cos ⁡ 2 ϕ rad \eta^2 = \frac{e^2}{1-e^2} \cos^2 \phi_{\text{rad}} η2=1e2e2cos2ϕrad k 0 = 0.9996 k_0=0.9996 k0=0.9996 为比例因子。

四、UTM坐标 → 大地坐标(反算)

  1. 去除虚假位移
    E ′ = Easting − 500000 E' = \text{Easting} - 500000 E=Easting500000
    N ′ = { Northing ( 北半球 ) Northing − 1 0 7 ( 南半球 ) N' = \begin{cases} \text{Northing} & (\text{北半球}) \\ \text{Northing} - 10^7 & (\text{南半球}) \end{cases} N={NorthingNorthing107(北半球)(南半球)
  2. 计算起点纬度(迭代)
    μ = N ′ k 0 a ( 1 − e 2 / 4 − 3 e 4 / 64 − 5 e 6 / 256 ) \mu = \frac{N'}{k_0 a (1 - e^2/4 - 3e^4/64 - 5e^6/256)} μ=k0a(1e2/43e4/645e6/256)N
  3. 纬度迭代解算
    φ foot = μ + ( 3 e 1 2 − 27 e 1 3 32 ) sin ⁡ ( 2 μ ) + ( 21 e 1 2 16 − 55 e 1 4 32 ) sin ⁡ ( 4 μ ) + ( 151 e 1 3 96 ) sin ⁡ ( 6 μ ) \begin{align*} \varphi_{\text{foot}} = \mu &+ \left( \frac{3e_1}{2} - \frac{27e_1^3}{32} \right) \sin(2\mu) \\ &+ \left( \frac{21e_1^2}{16} - \frac{55e_1^4}{32} \right) \sin(4\mu) \\ &+ \left( \frac{151e_1^3}{96} \right) \sin(6\mu) \end{align*} φfoot=μ+(23e13227e13)sin(2μ)+(1621e123255e14)sin(4μ)+(96151e13)sin(6μ)
  4. 最终纬度/经度计算
    ρ = a ( 1 − e 2 ) ( 1 − e 2 sin ⁡ 2 φ foot ) 1.5 ν = a 1 − e 2 sin ⁡ 2 φ foot φ = φ foot − E ′ tan ⁡ φ foot ρ ν [ 1 − E ′ 2 6 ν 2 ( 3 tan ⁡ 2 φ foot ( 1 + η 2 ) − η 2 ) ] λ = λ 0 + arctan ⁡ ( sinh ⁡ ( E ′ / ( k 0 ν ) ) cos ⁡ φ foot ) \begin{align*} \rho &= \frac{a(1-e^2)}{(1-e^2 \sin^2 \varphi_{\text{foot}})^{1.5}} \\ \nu &= \frac{a}{\sqrt{1-e^2 \sin^2 \varphi_{\text{foot}}}} \\ \varphi &= \varphi_{\text{foot}} - \frac{E' \tan \varphi_{\text{foot}}}{\rho \nu} \left[1 - \frac{E'^2}{6\nu^2} \left( 3 \tan^2 \varphi_{\text{foot}} (1 + \eta^2) - \eta^2 \right) \right] \\ \lambda &= \lambda_0 + \arctan\left( \frac{\sinh(E' / (k_0 \nu))}{\cos \varphi_{\text{foot}}} \right) \end{align*} ρνφλ=(1e2sin2φfoot)1.5a(1e2)=1e2sin2φfoot a=φfootρνEtanφfoot[16ν2E′2(3tan2φfoot(1+η2)η2)]=λ0+arctan(cosφfootsinh(E/(k0ν)))

五、特殊处理

  1. 跨越带处理
    a. 边界点需计算两带坐标;
    b. 带号重定义:zone = zone ± 1 = \text{zone} \pm 1 =zone±1
  2. 极区转换: UTM仅覆盖80°S–84°N,极区使用UPS投影。
  3. 中国特殊情况: 国内采用高斯-克吕格投影(3°分带); 带号计算: n = ⌊ L 3 + 0.5 ⌋ n = \left\lfloor \frac{L}{3} + 0.5 \right\rfloor n=3L+0.5,中央子午线 L 0 = 3 n L_0 = 3n L0=3n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

点云侠

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值