目录
一、大地坐标系(Geographic Coordinate System)
以经纬度表示位置,使用椭球体模型(如WGS84)。 纬度 φ
(-90°~90°,赤道为0°); 经度 λ
(-180°~180°,本初子午线为0°)。
WGS84椭球参数:
参数 | 值 | 说明 |
---|---|---|
长半轴 a | 6378137.0 m | 赤道半径 |
扁率 f | 1/298.257223563 | - |
第一偏心率平方 e² | ≈0.00669438 | e 2 = 2 f − f 2 e^2=2f-f^2 e2=2f−f2 |
二、UTM坐标系(Universal Transverse Mercator)
投影类型:横轴墨卡托投影(高斯-克吕格投影的全球版)。
分区规则:
- 全球分60个纵向带(每6°经度一个带);
- 带号计算: zone = ⌊ λ + 180 6 ⌋ + 1 \text{zone} = \left\lfloor \frac{\lambda+180}{6} \right\rfloor +1 zone=⌊6λ+180⌋+1
坐标表示:
- 东距(Easting):中央经线为500,000米(虚假东移);
- 北距(Northing):赤道为0米(南半球为10,000,000米虚假北移)。
三、大地坐标 → UTM坐标(正算)
- 计算中央经线: λ 0 = ( zone × 6 − 183 ) \lambda_{0}=(\text{zone} \times 6 - 183) λ0=(zone×6−183)
- 转为弧度制:
ϕ rad = ϕ ⋅ π 180 , Δ λ = ( λ − λ 0 ) ⋅ π 180 \phi_{\text{rad}}=\phi \cdot \frac{\pi}{180}, \quad \Delta\lambda=(\lambda - \lambda_0) \cdot \frac{\pi}{180} ϕrad=ϕ⋅180π,Δλ=(λ−λ0)⋅180π - 卯酉圈曲率半径: N = a 1 − e 2 sin 2 ϕ rad N=\frac{a}{\sqrt{1-e^2 \sin^2 \phi_{\text{rad}}}} N=1−e2sin2ϕrada
- 投影公式:
Easting = k 0 N cos ϕ rad ⋅ Δ λ ⋅ [ 1 + Δ λ 2 6 cos 2 ϕ rad ( 1 − tan 2 ϕ rad + η 2 ) ] + 500000 Northing = k 0 [ ∫ 0 ϕ M d ϕ + Δ λ 2 2 N sin ϕ rad cos ϕ rad ] \begin{align*} \text{Easting} &= k_0 N \cos \phi_{\text{rad}} \cdot \Delta\lambda \cdot \left[1 + \frac{\Delta\lambda^2}{6} \cos^2 \phi_{\text{rad}} (1 - \tan^2 \phi_{\text{rad}} + \eta^2) \right] + 500000 \\ \text{Northing} &= k_0 \left[ \int_0^\phi M d\phi + \frac{\Delta\lambda^2}{2} N \sin \phi_{\text{rad}} \cos \phi_{\text{rad}} \right] \end{align*} EastingNorthing=k0Ncosϕrad⋅Δλ⋅[1+6Δλ2cos2ϕrad(1−tan2ϕrad+η2)]+500000=k0[∫0ϕMdϕ+2Δλ2Nsinϕradcosϕrad]
其中 η 2 = e 2 1 − e 2 cos 2 ϕ rad \eta^2 = \frac{e^2}{1-e^2} \cos^2 \phi_{\text{rad}} η2=1−e2e2cos2ϕrad, k 0 = 0.9996 k_0=0.9996 k0=0.9996 为比例因子。
四、UTM坐标 → 大地坐标(反算)
- 去除虚假位移:
E ′ = Easting − 500000 E' = \text{Easting} - 500000 E′=Easting−500000
N ′ = { Northing ( 北半球 ) Northing − 1 0 7 ( 南半球 ) N' = \begin{cases} \text{Northing} & (\text{北半球}) \\ \text{Northing} - 10^7 & (\text{南半球}) \end{cases} N′={NorthingNorthing−107(北半球)(南半球) - 计算起点纬度(迭代):
μ = N ′ k 0 a ( 1 − e 2 / 4 − 3 e 4 / 64 − 5 e 6 / 256 ) \mu = \frac{N'}{k_0 a (1 - e^2/4 - 3e^4/64 - 5e^6/256)} μ=k0a(1−e2/4−3e4/64−5e6/256)N′ - 纬度迭代解算:
φ foot = μ + ( 3 e 1 2 − 27 e 1 3 32 ) sin ( 2 μ ) + ( 21 e 1 2 16 − 55 e 1 4 32 ) sin ( 4 μ ) + ( 151 e 1 3 96 ) sin ( 6 μ ) \begin{align*} \varphi_{\text{foot}} = \mu &+ \left( \frac{3e_1}{2} - \frac{27e_1^3}{32} \right) \sin(2\mu) \\ &+ \left( \frac{21e_1^2}{16} - \frac{55e_1^4}{32} \right) \sin(4\mu) \\ &+ \left( \frac{151e_1^3}{96} \right) \sin(6\mu) \end{align*} φfoot=μ+(23e1−3227e13)sin(2μ)+(1621e12−3255e14)sin(4μ)+(96151e13)sin(6μ) - 最终纬度/经度计算:
ρ = a ( 1 − e 2 ) ( 1 − e 2 sin 2 φ foot ) 1.5 ν = a 1 − e 2 sin 2 φ foot φ = φ foot − E ′ tan φ foot ρ ν [ 1 − E ′ 2 6 ν 2 ( 3 tan 2 φ foot ( 1 + η 2 ) − η 2 ) ] λ = λ 0 + arctan ( sinh ( E ′ / ( k 0 ν ) ) cos φ foot ) \begin{align*} \rho &= \frac{a(1-e^2)}{(1-e^2 \sin^2 \varphi_{\text{foot}})^{1.5}} \\ \nu &= \frac{a}{\sqrt{1-e^2 \sin^2 \varphi_{\text{foot}}}} \\ \varphi &= \varphi_{\text{foot}} - \frac{E' \tan \varphi_{\text{foot}}}{\rho \nu} \left[1 - \frac{E'^2}{6\nu^2} \left( 3 \tan^2 \varphi_{\text{foot}} (1 + \eta^2) - \eta^2 \right) \right] \\ \lambda &= \lambda_0 + \arctan\left( \frac{\sinh(E' / (k_0 \nu))}{\cos \varphi_{\text{foot}}} \right) \end{align*} ρνφλ=(1−e2sin2φfoot)1.5a(1−e2)=1−e2sin2φfoota=φfoot−ρνE′tanφfoot[1−6ν2E′2(3tan2φfoot(1+η2)−η2)]=λ0+arctan(cosφfootsinh(E′/(k0ν)))
五、特殊处理
- 跨越带处理:
a. 边界点需计算两带坐标;
b. 带号重定义:zone
= zone ± 1 = \text{zone} \pm 1 =zone±1 - 极区转换: UTM仅覆盖80°S–84°N,极区使用UPS投影。
- 中国特殊情况: 国内采用高斯-克吕格投影(3°分带); 带号计算: n = ⌊ L 3 + 0.5 ⌋ n = \left\lfloor \frac{L}{3} + 0.5 \right\rfloor n=⌊3L+0.5⌋,中央子午线 L 0 = 3 n L_0 = 3n L0=3n。